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ABSTRACT
This paper presents the results of in-depth study of 14 teams’ de-
velopment processes during a three-week undergraduate course
organized around a secure coding competition. Contest participants
were expected to first build code to a specification—emphasizing
correctness, performance, and security—and then to find vulnera-
bilities in other teams’ code while fixing discovered vulnerabilities
in their own code. Our study aimed to understand why developers
introduce different vulnerabilities, the ways they evaluate programs
for vulnerabilities, and why different vulnerabilities are (not) found
and (not) fixed. We used iterative open coding to systematically
analyze contest data including code, commit messages, and team
design documents. Our results point to the importance of existing
best practices for secure development, the use of security tools, and
development team organization.
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1 INTRODUCTION
Secure software development is a difficult task, exemplified by the
fact that vulnerabilities are still discovered in production code on a
regular basis [18, 49, 60]. Many solutions have been put forward
to solve this problem: more security education [16, 33, 34, 39, 59],
better secure development tools [5, 8, 9, 22, 27, 43, 50, 67, 72, 77, 78],
and better integration of security in to the software development
cycle [6, 17, 42, 48, 65].

Given the difficulty of balancing various business pressures (e.g.,
costs, customer experience, delivery date) during software develop-
ment [63], it is important to understand which solutions aid secure
development most effectively and efficiently. Companies simply
will not adopt every secure development practice; how should they
prioritize their choices? To answer this question, we must under-
stand why developers introduce different vulnerabilities, as well as
how and why testers (do not) find and fix them, in order to identify
processes and tools that most effectively reduce real risks.

Prior work has considered secure development in controlled
settings, allowing clear comparisons among different tools and
strategies [1, 2, 53–55, 61]. While valuable, these studies are limited
in ecological validity, as the program size and flexibility of approach
are restricted by necessity. Other work has reviewed open-source
repository commits to identify practices correlated with greater
vulnerability incidence, providing results from a real-world set-
ting [44–46, 62]. However, it is difficult to make clear comparisons
between these codebases due to significant differences in goals
and functional requirements. This research also typically cannot
investigate developer motivations or thought processes, as only
submitted code (with often-terse commit messages) is available.
Finally, some recent work has taken an ethnographic approach, em-
bedding researchers in companies to observe secure-development
practices [63, 81]. This work provides rich insights into the devel-
opment process, but to date, has mostly focused on organizational
processes impeding security, not technical issues.

In prior work, we1 sought to establish a middle point along this
spectrum with the Build It, Break It, Fix it (BIBIFI) secure-coding
competition, which balances ecological validity with study con-
trol by having participants complete a multi-week, well-defined
programming project with few process constraints [66]. We then re-
viewed code submitted during four BIBIFI competitions to uncover
1Throughout the paper we use we/our as shorthand to describe prior work with
partially overlapping authorship.
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an in-depth taxonomy of the vulnerabilities introduced by devel-
opers while building secure software [82]. We manually analyzed
submissions to discover characteristics of vulnerabilities developers
introduced, such as general vulnerability type, severity, and ease
of exploitation. However, as we only reviewed submitted code, we
were not able to determine why and how developers introduce,
find, and address vulnerabilities. Understanding this would enable
better recommendations to improve secure software development,
security education, and secure development tools.

To address this limitation, we conducted an in-depth study of 14
teams’ development processes during a three week undergraduate
course centered on a BIBIFI competition. Student teams built a
software-based home IoT system with role-based access control
policies. Teams then attempted to find vulnerabilities in other teams’
code and fixed vulnerabilities in their own code found by other
teams. The course scoring emphasized real-world constraints and
priorities, i.e., security, performance, and functionality.

Implementing the BIBIFI competition as a short course allowed
us to collect fine-grained data about participants’ mindsets and
approaches, both while developing software and when finding vul-
nerabilities. Doing so allowed us to understand why participants
introduced vulnerabilities, as well as how and why they found them
and (sometimes) fixed them. Prior exploration of BIBIFI submissions
revealed, in depth, the type and details of introduced vulnerabili-
ties [82]. This work confirms the prior results and adds insight into
why developers introduce these vulnerabilities. We consider three
key research questions:

RQ1 What types of vulnerabilities do developers introduce? Why?
RQ2What types of vulnerabilities are found in code review? Why?
RQ3Why do developers fix different types of vulnerabilities? How?

We identify key trends answering each question.
For RQ1, we find that both the extent of the formal design, and the
overall development timeline, seem to relate to security outcomes.
Teams with a detailed initial design tended to introduce fewer vul-
nerabilities than those without. However, teams with detailed initial
designs tended to stick with them, so errors or misunderstandings
in those designs became vulnerabilities in the finished code. In
terms of timeline, teams with the fewest vulnerabilities did little or
no security work on the very last days of the build phase, instead
working steadily on security throughout. Conversely, teams that
waited until the end to implement security often ran out of time
and failed to implement key security functions, leading to many
vulnerabilities.

For RQ2, we find that different types of vulnerabilities are dis-
covered differently. Teams often found vulnerabilities almost in-
cidentally: vulnerabilities arising from the failure to implement
some security requirement(s) were most often found when looking
broadly for a related problem, rather than specifically for that vul-
nerability type. Vulnerabilities that arose from simple programming
mistakes similarly tended to be found incidentally, although they
were frequently found by testing for almost anything, related or
not. In contrast, vulnerabilities related to misunderstanding secu-
rity properties required deeper knowledge and more focused test-
ing. Overall, student teams strongly preferred to search for simple
vulnerabilities; more complex misunderstandings (and associated
vulnerabilities) were rarely targeted, if at all.

For RQ3, we find that different types of vulnerabilities are fixed
differently. Vulnerabilities relating to failing to implement some
security requirement(s) were likely to remain unfixed at the end
of the study, possibly because fixing them would in many cases re-
quire rearchitecting large parts of the system design. Vulnerabilities
associated with simple mistakes were often found by teams them-
selves, during their own build-phase testing (before attacks from
other teams), and were typically easy to fix, but sometimes went
unfixed due to time constraints. In contrast, vulnerabilities caused
by misunderstanding security requirements were rarely found until
they were exploited by other teams. Teams could only fix these
vulnerabilities once they had corrected their misunderstandings,
which could be challenging and time-consuming.

We observe that current automated tools tend to target vulnera-
bility types, such as mistakes, that are easily found and exploited,
but are unlikely to flag vulnerabilities that are difficult to both find
and fix, such as those owing to a misunderstanding of security
concepts. These vulnerabilities might be better addressed by con-
sulting a security expert during the design process. Indeed, our
results suggest the importance of including security in detailed
designs, and revisiting and updating those designs while following
secure development best practices.

2 DATA AND ANALYSIS
This section describes the course structure and the data collected.

2.1 Course structure and data analysis

Course structure. The course followed a modified BIBIFI com-
petition structure [66], organized into three phases: build, break,
and fix. Course participants worked in teams for one week to build
a substantive program (2363 LoC on average), following a pro-
vided specification (See below for specification description). Teams
earned points based on the number of correct functions they im-
plemented (evaluated via instructor-defined test cases) and their
code’s performance (running time of instructor test cases).

After the build phase, the course used a hybrid break-fix phase.
All teams’ code was made available to the other teams, which could
then attempt to break their classmates’ submissions by producing
test cases demonstrating vulnerabilities. Teams were also allowed to
submit vulnerability reports that clearly stated the insecure line(s)
of code in the target program and explained the vulnerability, as well
as why it was not feasible (within class constraints) to demonstrate
it. This could occur due to competition time constraints (e.g., brute
force exploitation not feasible in the course timeframe without
specialized equipment) or exploit complexity. We added this option
because in previous contests it was not clear whether teams had
failed to find vulnerabilities, or had found them but been unable to
exploit them [66, 82]. None of these reports were submitted.

Teams gained points for each valid break submitted. To incen-
tivize unique breaks, different teams exploiting/reporting the same
vulnerability shared its points evenly. As breaks were identified,
teams could update their code to fix vulnerabilities; teams lost
points for every 24 hours that a known break went unfixed. This
hybrid break-fix setup is a departure from prior BIBIFI exercises,
where the break and fix phases occur sequentially [66]. We made
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this change to better reflect real-world scenarios in which devel-
opers often have to handle fixing issues in code while managing
other responsibilities and encourage teams to perform fixes, which
was a problem in previous competition iterations [66, 82].

Project Specification. The build-it project was a lightweight IoT
smart home controller that manages a smart home by receiving
updates from sensors and controlling output devices. The specified
controller can run user scripts, written in a domain-specific lan-
guage, that update output devices (e.g. lights, thermometer, etc),
retrieve information about the current state of the system (e.g. lights
on/off, thermometer temperature, etc), or store information for fu-
ture use (e.g. variables, permissions for users, new users, etc). Users
of this smart home submit scripts in the domain-specific language.
Sensors, output devices, and data are protected by role-based ac-
cess control policies customizable by special users (admin) and the
data’s owner. Other users may receive delegated access, directly
or transitively. This role-based access control was expected to be
recursive, such that if a parent (delegator) lost permission on a
variable, its children (delegatees) also lost permission. Further, the
controller must validate user-provided scripts so that they will only
run if properly authorized. Teams were expected to implement au-
thentication using passwords and usernames. For extra build points,
teams could implement some commands that operate similarly to
required commands, such as for loops, indexing variable history, or
resetting variable history. The full specification can be found in the
supplementary materials.2

Class Instruction. Since participants were not required to have
prior security training, the course started with a short introduction
to security and threat modeling taught by one of the researchers.
This training ensured a minimum level of security knowledge
among participants and covered examples and approaches for think-
ing about possible attack surfaces and mitigations when developing
a program. Teams were given time in class (about 11 hours total,
over the 2.5-week course) to build their system, break other systems,
and fix breaks. This ensured dedicated time for teams to work col-
laboratively. Teams were also expected to work on the competition
outside class time, in lieu of other homework. During class time,
teamswere able to ask the instructors—the researcher who provided
the original lecture and another research team member—to clarify
vagueness in the specification and resolve issues teams had working
with the course infrastructure. Any specification clarifications were
announced to the entire class and updated in the specification docu-
ment to ensure consistency between teams. When teams asked for
help or advice with system design or implementation, the instruc-
tors directed students through problem introspection asking teams
first to describe what is correct about their approach and how they
know, then to identify differences from correct outputs. This series
of introspective questions is taken from prior work investigating
successful CS tutoring approaches [28].

Course-centered research design. For this classroom-based re-
search, we drew on methodologies common to CS and engineering

2Supplementary materials, as well as a version of the paper with appendices included,
can be found at https://osf.io/s8ztb/?view_only=f8b9fb7804ab46648000ff1f52ca0d6c.

education research [13, 24]. In this complex setting, education re-
search suggests collecting three types of data—activity (e.g., obser-
vations [10]), self-reported accounts (e.g., interviews [12, 14] and
surveys [23, 70]), and artifacts (e.g., program designs [74, 80] and
code [75])— and triangulating results among these data points [24,
pg 181-186]. We adopt this approach, collecting accounts and ar-
tifacts in each BIBIFI phase, as detailed in the following sections
(Sections 2.2-2.4). We considered collecting activity data, but chose
not to as it did not make sense in the setting of our study. Much of
our teams’ work was completed outside of class, so direct observa-
tions were limited and self-reporting of this kind would likely be
vague or unreliable [21]; create significant additional work for par-
ticipants, potentially causing response fatigue [64]; and would offer
limited additional information from the other data sources. Because
we collect multiple types of account and artifact data, we believe
we have sufficient information to provide useful triangulation.

Data analysis. We analyzed most of this data through iterative
initial coding, sometimes also known as open coding [19, 51]. This
analysis produces a set of labels called a codebook. Our codebook
provides labels for the different elements and can be found in Table
2 in the supplementary materials. Inter-rater reliability (IRR) was
generally not calculated, as the small number of responses and
submissions for many aspects of the data did not allow for it. When
we did calculate IRR, we used Krippendorff’s 𝛼 , a conservative
measure that considers how much better coders are than simply
guessing [31]. A threshold of 𝛼 > 0.8 is recommended as a sufficient
level of agreement [31]. We specifically highlight cases where we
calculate IRR in the following sections. For most of the data anal-
ysis, the first author and one other team member coded the data.
We specifically highlight the one case where this is different. The
following subsections describe the coding processes and codebooks
for each different major data category.

2.2 Build data (RQ1)
During the build phase, we collected and initial-coded data from
three sources: build submissions (artifact), commit messages (ac-
count), and design documents (artifact).

Build submissions. While writing project code, participants were
instructed to produce regular, atomic commits (i.e., a single change
per commit) to a designated gitlab repository accessible by the
teaching and research staff. To incentivize regular submissions,
each commit automatically triggered performance and correctness
testing to update the team’s performance and functionality scores,
giving participants immediate feedback on their efforts. With regu-
lar, atomic commits, we were able to track participants’ progression,
implementation strategies, and areas of focus.

Students were also instructed to discuss the context of the com-
mit (e.g., what changed, reason for change, associated requirement,
impact on design) in each commit message. The full set of items
required in build commit messages can be found in Table 2 in the
supplementary materials. These messages provide an important
window into participants’ development process: what they were
working on, the reasoning behind their approach, and how it fits
into their design. By collecting this data throughout the competi-
tion, we also learn about the development timeline and what events
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trigger changes. Perhaps most importantly, detailed commit mes-
sages frequently allow us to differentiate vulnerabilities arising
from misunderstanding of security concepts from implementation
errors, helping us to understand why different vulnerabilities are
being introduced (RQ1).

Design documents. To provide additional insight into teams’ un-
derstanding of security requirements, we asked them to produce
design documents. Teams were required to submit documents de-
tailing their system’s design, and enumerating potential threats and
associated mitigations, as described in Table 2 in the supplementary
materials. Using this data, we can learn more about the causes of
vulnerabilities, and distinguish errors in design from implemen-
tation errors (RQ1). Students submitted initial design documents
individually (16 students) before development began (teams had not
yet been formed), and then teams submitted final design documents
at the end of the build phase (11 teams), providing insight into how
their designs change as they work together to develop, as well as
how and whether security issues are introduced and/or eliminated
over time.

Analysis of Build data.We analyzed the commit messages and
the code submissions using iterative initial coding, as described
in Section 2.1. For the build submissions, the first author and an
additional author—different from the second coder discussed in
subsequent sections—performed the analysis. This second coder
was selected specifically because expert security knowledge was
required to identify vulnerabilities in the build submissions. The
two coders looked for vulnerabilities independently in each team’s
code; later, break submissions were also reviewed to ensure no
vulnerabilities were missed and all were appropriately categorized.
A vulnerability was only labeled within the codebase once a team
attempted to implement that functionality or security. Teams did
not start with No Implementation vulnerabilities because their code
did not have any access control (because they hadn’t built anything
yet), but, rather, as teams built individual pieces of functionality,
without any access control, vulnerabilities were labeled accordingly.

IRR was calculated for all build submission variables other than
binary variables (the presence of a vulnerability or change in design
document), since coding binary variables requires little to no inter-
pretation, as recommended in prior work [41]. All vulnerabilities
were confirmed by both coders, and consensus for all codes was
reached via discussion. We categorize different vulnerability types
using our prior codebook [82]. The final codebook and associated
IRR values are given in Table 3 in the supplementary materials.

To analyze the initial design documents, we merged the 16 indi-
vidual students’ submissions into 11 teams, using a conservative
process where if one team member’s document included something
(e.g., a design decision or a vulnerability) we considered it present
for the team. When considering whether a design was in-depth, we
used the deepest of the team members’ designs.

Due to the small sample sizes for the design documents, we coded
these collaboratively rather than independently. Two coders ana-
lyzed the documents iteratively, coding two documents per round
independently and then meeting to discuss and resolve differences.
The codebook is provided in Table 6 in the supplementary materi-
als. We use this analysis to explore trends connecting design depth

and the resulting security of the code. This allowed us to better
understand the cause of different types of vulnerabilities (RQ1).

2.3 Break data (RQ2)
During the break phase, we collected break submissions (artifact)
and commit messages (account). While the break and fix phases oc-
curred simultaneously, we describe them separately for simplicity.

Break submissions. Break submissions include test cases demon-
strating insecure behavior (as compared to an oracle implementa-
tion provided by the instructors), as well as written vulnerability
reports (see Section 2.1). As in the build phase, teams were asked
to include detailed commit messages with each submission. Teams
were prompted to supply a description of the break, their reasoning,
and their perception of the difficulty both of finding the vulnerabil-
ity and generating a working exploit (test case).

Taken together, these two data sources illuminate participants’
testing strategy: what do they try, in which order? Do they fully
understand the vulnerability they are exploiting, or are they brute-
forcing some aspect of it? Do they focus on finding all problems
in one target, or try the same (or similar) exploit against multiple
teams? This data also provides insight into what types of vulner-
abilities are (not) easy to find and to exploit (RQ2). Details about
the break submissions and commit messages are given in Table 2
in the supplementary materials.

Analysis of Break data. Despite the large number of submitted
breaks (N= 275), only a subset were successful and unique (N=52).
The two coders analyzed breaks and associated commit messages in
rounds of 20, meeting in between to discuss and resolve differences.
The codebook is shown in Table 4 in the supplementary materials.

2.4 Fix data (RQ3)
In the fix phase, we collected fix submissions (artifact) and commit
messages (account).

Fix submissions. Participants patched their code in response to a
break by committing an update to their git repository. Teams were
incentivized to produce fixes quickly, as they lost more points the
longer a break went unfixed. As before, participants were prompted
to provide detailed commit messages, this time describing how they
fixed the vulnerability, its underlying cause, their confidence the fix
resolved the vulnerability, and whether they changed their design
(versus just their implementation). Details are given in Table 2 in
the supplementary materials.

Submitted fixes and commit messages allow us to understand
whether participants understand the vulnerability and can identify
the cause in their code (RQ3). This data allows us to understand
where and why participants struggled to address vulnerabilities
(RQ3) and provides further insight into whether vulnerabilities
were caused by poor design or implementation (RQ1).

Analysis of Fix data. The small number of unique breaks led
to a correspondingly small number of fix submissions (N=48). As
such, we again coded this data collaboratively, with two coders
meeting after every 10 submissions to discuss and resolve differ-
ences. Codebook details are given in Table 5 in the supplementary
materials.
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2.5 Ethics
This studywas approved by the University ofMaryland Institutional
Review Board (IRB). Participants were informed that a study was
being run within the course and that by signing up for the course,
they were consenting to being a part of the study. This information
was clearly presented on the course website, in the course posting,
and directly via email when students registered for the course. We
also presented this information to students on the first day of class
to ensure all students were clearly informed.

To avoid coercion, this 1-credit course was offered during an
off-peak semester and was not major-required. Because students
were assigned a grade for the course, we tailored the requirements
so that a majority of the points were given if the student met all
functionality requirements and was active throughout the break/fix
phase. Specifically, students could achieve an A even if they were
lower-ranked in the competition. Remaining points were allocated
based on competition rank to ensure motivation.

2.6 Limitations
Our goal in this study was to understand the challenges faced by
developers when pursuing secure development, using students as
proxies for professionals. While students often have less experience
than professionals, several recent studies conclude they can be
adequate substitutes in secure software development studies [35,
52, 53, 79], as many skilled professionals have limited experience
with security specifically [2, 4, 11, 29, 32, 47, 66, 73, 82]. However,
it is likely students have lower ability to find vulnerabilities as
compared professionals. As such, we consider the vulnerability
hunting done by students as a lower bound and, as security experts,
provide additional review for missed vulnerabilities. Still, we believe
lessons from this work can apply to more experienced developers.

In some ways, our study represents a best-case scenario for se-
curity considerations. Because participants were explicitly asked
to reflect on their progress and design, they likely put more effort
into considering design and evaluating their development process
than they otherwise might have. It is possible that encouraging
regular, atomic commits could improve code security, as this is rec-
ommended best practice [26], but prior studies of this relationship
have been inconclusive [44]. Additional reflection about the reason-
ing behind commits is helpful for development [37] and learning
generally [25, 68], so our results likely demonstrate an upper bound.
However, this allows us to understand development progression,
misunderstandings of security and requirements, and design ap-
proaches. Relatedly, participants were aware they needed to include
security in their system from the outset, which may not accurately
reflect general developer experiences. However, this allows us to
understand how vulnerabilities that occur even when developers
explicitly consider security from the beginning.

Our results also have the normal limitations of field work, includ-
ing that we can only observe associations, not causality. Our study
was conducted with a limited sample size (14 teams) at only one
institution. Despite its limitations, field work is a common practice
in HCI research [38] and has been shown to be useful in security
research [36, 63, 76, 81]. The BIBIFI contest does not perfectly sim-
ulate realistic development settings. Our participants were able to
choose their own development environments and programming

languages, which is often not the case in company settings. Our
participants were tasked with building an entire (small) system
from scratch rather than the common developer tasks of modifying
or managing existing codebases. Despite these differences, study-
ing the reason for (in)secure development from this lens gives us
insights that may prove useful for improving broader practices.

3 DEVELOPMENT AND VULNERABILITIES
(RQ1)

Our analysis of code submissions identified 145 unique vulnerabili-
ties introduced throughout the build round and 79 unique vulner-
abilities remaining in participants’ code at the conclusion of the
build round, with a median of 12.5 vulnerabilities remaining per
team. Here, unique refers to non-repeating-per-team vulnerabili-
ties; the same type of vulnerability could count for more than one
team. In contrast, throughout Sections 3.1-3.3, we use distinct to
refer to distinct types of vulnerabilities, such that two teams could
have the same No Implementation, Misunderstanding, or Mistake,
but it is only counted once. Vulnerabilities in build submissions
were only labeled once teams attempted to implement the missing
functionality, as mentioned in Section 2.2. These vulnerabilities
can be categorized into 10 different issues. We employed a similar
codebook to the one we used when analyzing prior BIBIFI sub-
missions [82] , re-deriving codes from the original codebook. Our
codebook includes one addition, as our specification required a
mechanism for timing out when input is no longer received from a
user script, where prior iterations did not.

This section presents vulnerability descriptions and examples,
as well as relationships between the software development tech-
niques and strategies teams employed and the vulnerabilities they
introduce. Throughout this section, we use V to represent the num-
ber of vulnerabilities present and T to represent the number of
teams. We select illustrative examples in each of the three major
vulnerability categories (No Implementations, Misunderstandings,
andMistakes), but do not comprehensively describe all vulnerability
types in each category; as such, the V values within each subsection
do not always sum to the total for that category. A comprehensive
accounting of all vulnerabilities for each phase of the competition
is given in Table 1.

We coded vulnerabilities based on three high-level categories es-
tablished in our prior work [82]: No Implementation,Misunderstand-
ing, and Mistake. Our results closely mirror the distribution found
in the multiuser database problem (most similar to our project) with
slightly fewer No Implementation vulnerabilities in our iteration.
The tighter control of the classroom setting in our study likely
influenced teams to implement needed access control checks, but
teams in our study still missed many checks, as described below.
We are able to further expand the description of the vulnerabilities
from the prior paper by explaining the reasons for, and the process
of introducing, the different vulnerabilities.

3.1 No Implementation
A vulnerability was labeled as No Implementation when partici-
pants failed to attempt to implement necessary security mecha-
nisms (i.e., access control, authentication, or timeout mechanisms)
at all. We further divide this type into three sub-types depending
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Build Break Fix
Type Issue Introduced Fixed Exploited Unexploited Fixed Unfixed

No Implementation No access control 22 22 – – – –
Missing some access control 10 3 3 4 1 2
No timeout 6 3 3 – 1 2
No recursive delegation check 34 15 14 5 11 3

Total 72 43 20 9 13 7

Misunderstanding Incorrect access control assumptions 29 9 13 7 10 3
Incorrect input assumptions 5 0 4 1 4 –

Total 34 9 17 8 14 3

Mistake Control flow mistake 16 12 2 2 2 –
Insufficient error checking 14 1 13 – 7 6
Skipped algorithmic step 8 1 6 1 3 3
Uncaught runtime server error 1 0 1 – 1 –

Total 39 14 22 3 13 9

Table 1: Vulnerabilities introduced, (un)fixed, and (un)exploited throughout each phase.

Figure 1: Vulnerability types throughout each phase.

on whether the requirements were mentioned directly in the speci-
fication. Specifically, the All Intuitive and Some Intuitive codes were
used when teams failed to implement all or some, respectively, of
the stated security requirements (e.g., missing all or some access
control commands). Unintuitive requirements were not as explicit
within the specification (e.g. recursive delegation).

Teams implement more obvious security features, only miss-
ing them when they are rushed. Six teams had a total of 29 dis-
tinct No Implementation vulnerability types present in their projects

after the build phase. Teams were explicitly told to implement ac-
cess control and issue a timeout when the IoT controller does not
receive an indication of termination or input from a user-issued
script after 30 seconds (making them All Intuitive requirements).
Three teams missed this All Intuitive requirement (V = 3, T = 3).
Three teams missed some required access control checks (V = 7, T
= 3). These teams waited to build the functionality of the primitive
commands until late in the build phase and then forgot to add the
necessary access control checks, introducing these vulnerabilities
within the last 3 days. These teams built their access control checks
into each individual primitive command function, rather than build-
ing one function to handle all access control checks, so they would
have needed to write an entire new check for these last-minute
additions (T = 3). We further describe the effect of development
timeline on their code security in Section 3.4.

Teams fail to implement less obvious security features. Most
No Implementation vulnerabilities resulted from teams missing the
Unintuitive requirement of a recursive delegation check (V = 19, T
= 5). According to the specification, a principal p has a right r on a
variable x if there exists some principal q that has r on x and the
current security state includes an assertion that q is delegating r on
x to p. Based on this description, teams were expected to manage
delegations in a tree-like structure, where loss of permissions from
a parent results in loss of permissions to the child. This means that
teams must check and manage the rights of children and parents
simultaneously at time-of-use. This requirement was not explicitly
stated in the specification, meaning that teams had to infer its
implementation from the requirements. As mentioned by T6, the
reason for this vulnerability in their systemwas because they “didn’t
realize [the] system needed to search through all assertions,” which
was common among the teams that addressed this vulnerability.
Teams that introduced this vulnerability often built their code using
individual access control checks for each primitive command rather
than creating one function to manage it (T = 5).
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3.2 Misunderstanding
A vulnerability was labeled as a Misunderstanding when teams at-
tempted to implement necessary security requirements but misun-
derstood requirements or security concepts during implementation.

Teams conceptually misunderstood access control require-
ments. Eleven teams had a total of 34 distinct Misunderstanding
vulnerability types throughout the build phase, with 25 remaining
at the end. The most pervasive Misunderstanding was caused by
incorrect access-control assumptions (V = 20, T = 10). For exam-
ple, two teams attempted to implement recursive rights but did
not properly remove rights for participants in a delegation chain.
When a parent delegator lost a right on a variable, these teams
would remove the this right from all of its delegatees, correctly im-
plementing recursive rights. However, these teams would remove
every instance of this right from the delegatee, incorrectly remov-
ing delegations of this right from other parent delegators, causing
an availability violation. T4 said this vulnerability was caused by
poor “assumptions . . . . I assumed we always needed to revoke the
permission recursively, but I never actually checked if the user still
had access.” This is a conceptual Misunderstanding of the access
control requirements, because they thought that they should re-
move all rights rather than just a subset. In this case, the team
had a fundamental Misunderstanding of the requirements in the
specification, which was fairly common among teams (T = 3). Other
vulnerabilities related to special accounts in the system and their
restricted capabilities, how to handle the permissions for a specific
primitive command, and how to handle recursive delegation.

Teams implement most of the access control requirements,
but fail to consider all cases. The most common cause of Misun-
derstanding vulnerabilities was a team missing a specific subcase of
a requirement (T = 4). These included building recursive delegation
but failing to account for circular delegations, failing to check the
running principal during delegation, and allowing another principal
to delegate on behalf of the delegator. These teams did attempt to
implement recursive delegation (unlike No Implementation) and did
not fundamentally misunderstand the underlying concepts. They
just misunderstood a single facet of the requirement.

Teams overgeneralized security requirements based on pro-
vided tests. Participants also struggledwith building input-handling
code to correctly handle user scripts (V = 5, T = 4). For example, four
teams assumed all user scripts would end with a newline character
and wrote their code accordingly (by reading input line by line).
This resulted in an availability violation, as an attacker could gener-
ate a script that did not end in a newline —a correct script according
to the specification—causing the parser to hang and prevent future
connections. T2 identified the cause of this vulnerability in their
code as being “an assumption about the input cases. I assumed it
was not valid if a newline was not present at the end. Since all tests
contained one.” Note that the specification makes no mention that
the scripts must end with a newline. This team overgeneralized
assumptions from the provided examples, which caused them to
not fully consider how the timeout setup should work.

3.3 Mistake
A vulnerability was labeled as a Mistake when participants at-
tempted to correctly implement security checks and functionality,
but made a programming mistake that resulted in a vulnerability.

Teams failed to test for edge cases beyond provided tests.
Eleven teams had a total of 25 distinct Mistake vulnerability types
present at the end of, and 39 throughout, the build phase. The
most common issue was insufficient error checking (V = 13, T = 8),
commonly a lack of null value checking during script parsing. This
caused the server to crash on certain attacker-crafted malicious
scripts, leading to availability violations (V = 7, T = 5). These crashes
were restricted to availability exploits because teams exclusively
usedmemory-safe programming languages. However, if teams were
under performance or cultural pressure from their employer to use
an unsafe language, these vulnerabilities could have led to even
more serious exploits. Teams often attributed these Mistakes to
missing an edge case when implementing functionality or security:
specifically not checking for certain values (T = 3). T8 attributed a
Mistake in their code to the fact that they “did not have a null check
before attempting to access an element.” TheseMistakes were often
introduced within the last 3 days of the build phase (V = 7), making
them more difficult to catch.

Teams failed to test for security. Other Mistakes included teams
skipping a step while trying to implement security (V = 7, T =
6) and incorrect implementations of control flow (V = 4, T = 4).
Our participants noted two causes for these vulnerabilities: code
that runs functionally but not securely (T = 1), and code that runs
securely except for a specific input (T = 2). For example, teams were
required to roll back all changes in the event of a failure or security
violation while processing a user script. T6 set up their system
so that when a status of “FAILED” was returned, they would not
commit any of the changes from this set of primitive commands.
However, while testing, to simplify debugging, they changed the
code to print “FAILED” rather than return it and simply forgot to
revert this change. The code containing this vulnerability would
run functionally but would not meet the security requirements of
the specification. Given that the tests provided were centered on
functionality, teams did not uncover these vulnerabilities unless
they specifically tested their own code for security.

3.4 Development approach’s security impact
We next review trends relating different development strategies to
the introduction of different types of vulnerabilities (RQ1).

Detailed design is common with fewer vulnerabilities. Ana-
lyzing the final submitted design documents, we found four teams
submitted a detailed design document, four submitted a design
document containing minimal design considerations, and three
submitted a design document containing few to no design con-
siderations. Teams with detailed design explicitly described how
they were planning to implement access control. For example, T1
designed explicitly for access control and transitive rights by using
“a directed graph to represent the access rights available to each
principal for each variable or rule. Nodes in the graph represent
each principal, while edges, labeled with one of the four access
types, represent access delegation from one principal to another.”

 

1147



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Kelsey R. Fulton et al.

Teams with minimal design considerations mention of the necessity
of a security feature but do not describe how they plan to address
it in their code. In their design, T8 notes that “tampering could
be prevented by keeping a strict record of what users have what
rights,” but they do not mention any details about how they will
store or manage this. Teams with little to no design considerations
do not mention access control or authentication at all.

When comparing a team’s design depth to the security of their
submission, we observed teams with detailed designs also tended
to introduce fewer No Implementation and Mistake vulnerabilities.
The four teams with detailed designs only accounted for one (5%)
of the No Implementation vulnerabilities and 33% of the Mistake
vulnerabilities. Conversely, the four teams with minimal designs
accounted for 56% and 42% of the vulnerabilities respectively. For
example, T8 describes one possible threat: “tampering could happen
if a user writes to data values it does not have write access to.”
However, they provide very little detail about how they intend to
mitigate this attack: “tampering could be prevented by keeping a
strict record of what users have what rights to each variable, sensor,
output device, or rule.” T8 makes no mention of how they will
manage this record or the need for recursive delegation checks, and
they failed to implement recursive delegation checks. Similarly, we
note that teams that failed to implement the All Intuitive timeout
requirement (T = 3), missed some access control checks (T = 2), and
failed to implement recursive delegation checks (T = 4) failed to
make mention of these requirements within their design documents.

It seems plausible that developer experience, instead of just bet-
ter planning, might cause both better planning and better outcomes.
However, course teams exhibited little variation in experience: ev-
ery team had at least one member self-rated as “novice” in secure
development experience and “intermediate” in software develop-
ment experience. All teams but one had at least one member (most
teams both) with academic secure development training.

Teams with detailed designs did not revisit their design even
if vulnerable, especially for Misunderstandings. We observed
that teams with a detailed design tended to stick with those de-
signs, which sometimes encoded initial Misunderstandings into
their projects. Teams that had a fundamental Misunderstanding of
security requirements designed in detail for these features within
their design documents (T = 3). For example, T7 had a detailed
design document in which they describe how they will handle the
access control requirement described in the specification through
the use of “an access control component that controls authentica-
tion and monitors which principal should have access to what” in
which they “maintain a list of ‘direct’ objects that keep track of
which variables principals can access directly and ‘delegate objects’
that keep track of rights that have been delegated. . . and ensures
that principals delegating rights are actually permitted to do so.”
However, despite their detailed design, T7 failed to consider the
possibility of circular delegation chains, in which the parent del-
egator and the last account to receive permissions are the same.
This results in a Misunderstanding vulnerability, which caused an
infinite loop during a delegation check. This suggests that teams
that misunderstand the system’s security needs from the beginning
(i.e., design-time) are unlikely to catch these issues later.

Building security early correlates with secure development.

When we consider teams’ development timelines in comparison to
the number of vulnerabilities introduced during the build phase,
we note several trends. We plot the number of functionality and
security commits each day for several notable teams in Figure 2.

As seen in Figure 2, the team that had the fewest vulnerabilities,
T1, did no security work on the very last day of the build phase
(day 9). T1, which also had no vulnerabilities at the conclusion of
the build phase, started implementing their access-control code on
day 2 of the build phase and edited it slowly over the following 6
days. In contrast, T11, which had the fourth most vulnerabilities at
the conclusion of the build phase, had security commits up until
the last day and did not start implementing their access control
code until day 6 of the build phase. They built the majority of the
access control functionality on day 8. On day 8, they introduced 20
different vulnerabilities, only fixing about half of them before the
conclusion of the build round (12).

T11 concluded the build round with 9 vulnerabilities in their
code, 8 of which were introduced on day 8. Further we note that
teams that waited to implement access control until late in the
build phase often ran out of time to implement recursive delegation
checks (T = 3). For example, T11 was still implementing basic access
control on the last day of the build phase, causing them to run out
of time to implement recursive delegation checks despite building
this requirement into their design.

Good development practices can help with security, but do
not make up for no design. We note some interesting ways
in which good development practices seem to interact with the
resulting code security. Teams T2 and T7 had a good design, but both
waited until late in the build phase to add security to their codebase,
rather than building it in incrementally. T7 introduced 5 different
vulnerabilities related to access control, 4 of which occurred on the
same day. On the other hand, T9 provided only a minimal design
document but built security in gradually over time, ending the
build-phase with the second fewest vulnerabilities.

Despite this general trend, we can see that T8 seemingly did ev-
erything correctly. They started building for security early and con-
tinued steadily throughout the build phase. So what went wrong?
The vulnerabilities introduced by T8 early in the build phase relate
to poor design decisions or a lack of design. T8 introduced 9 differ-
ent access-control-related vulnerabilities during the build phase,
including 7 before day 6. These vulnerabilities were conceptual in
nature, and they were slowly introduced over each small security
commit. Building incrementally does not make up for not designing
for security in depth. Other T8 vulnerabilities caused by a Mistake
in implementation were introduced in the last 3 days of the build
phase when T8 was likely rushing to complete their project.

4 ANALYSIS OF (UN)EXPLOITED
VULNERABILITIES (RQ2)

This section details the vulnerabilities that were (not) exploited
during the break round. We use the same type descriptions in
Section 3 to describe the exploits (not) uncovered.

Teams submitted 104 total valid breaks, resulting in 52 non-
repeating breaks (where the breaking team did not exploit the same
thing more than once againt the same team). Teams left 19 instances
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Figure 2: Number of functionality and security commits
through the build phase for select teams.

of vulnerabilities unfound and not exploited. When discussing vul-
nerabilities (not) exploited, we use E to represent the number of
distinct vulnerabilities exploited, T to represent the number of
teams that found this exploit, and U to represent the number of
vulnerabilities unexploited. We note that one team can exploit the
same vulnerability in multiple teams, as the same vulnerability can
exist in multiple programs. For example, two teams might both fail
to implement recursive delegation checks, so it is possible for E to
exceed T. Throughout this section, we select illustrative examples
within the three main vulnerability categories rather than discuss
every specific type of vulnerability in detail, so E and U do not
always sum to the total for No Implementations, Misunderstandings,
and Mistakes.

4.1 No Implementation
Of the 29 distinct No Implementation vulnerabilities present after
the build phase, 20 were exploited in the break phase. These related
to missing some access control (E = 3, T = 5), not timing out (E = 3,
T = 2), and missing recursive delegation checks (E = 14, T = 2).

Missing access control found when checking related issues.
In general, teams exploited these missing access control and re-
cursive delegation checks while testing a tangential, but related,
access control requirement, rather than via targeted attacks where
they reviewed code for a specific vulnerability. For example, T8
exploited a specific missing access control check on a primitive
command by testing the target code for a vulnerability related to
circular delegation, a tangential access control requirement. They
were not specifically testing to see if the target team failed to imple-
ment access control on this primitive command. Rather, they were
testing for a different access control requirement and found this
vulnerability. However, breaks exploiting a lack of timeout were
targeted: discovered explicitly by testing timeouts. For example,
T3 exploited two timeout vulnerabilities by “testing [malformed
user-scripts] and seeing if that caused [programs] to hang.”

Teams target more glaring issues rather than complex vul-
nerabilities. Nine No Implementation vulnerabilities were left un-
exploited, pertaining to missing some access control checks (U = 4)
and missing recursive delegation checks (U = 5). Notably, of the 9
unexploited No Implementation vulnerabilities, none were the All

Intuitive no timeout vulnerability. The no recursive delegation vul-
nerabilities that were left unexploited were in code that had other,
more glaring issues such as problems with input handling or tim-
ing out; teams generally favored attacking these issues rather than
the slightly more complex vulnerabilities. As breaks that exploited
missing access control checks were often found incidentally while
targeting other vulnerabilities, these vulnerabilities were likely left
unexploited because they were not accidentally triggered. Teams
favoring glaring issues rather than attacking more complex issues
may be an artifact of the study, as teams knew that the developers
of the code were students and the code was likely to contain bugs.
However, we expect that code review and testing in the software
development lifecycle also commonly target more obvious prob-
lems, and we incentivized specific targeting by giving more points
for the discovery of novel bugs.

4.2 Misunderstanding
There were 25 distinct Misunderstanding vulnerabilities present
after the build phase, and 17 were exploited in the break phase.
The exploited vulnerabilities included incorrect access control as-
sumptions (E = 13, T = 5) and incorrect assumptions about possible
user script inputs (E = 4, T = 6). Specifically, vulnerabilities due to
incorrect access control assumptions were overwhelmingly due to
a misunderstanding of requirements associated with recursive del-
egation checks, where teams attempted to implement the recursive
check but misunderstood a sub-piece or conceptual piece of the
requirement (E = 6, T = 4).

Misunderstanding vulnerabilities were exploited with tar-
geted testing. Breaks exploiting these Misunderstandings were
often crafted to test for a specificMisunderstanding rather than test-
ing for a broader, related requirement or being found incidentally.
For example, T4 tailored their break to test “that there are no avail-
ability issues when creating/deleting a circular chain” rather than
broadly attacking access control or recursive delegation checks.

Eight Misunderstanding vulnerabilities were left unexploited,
mostly related to incorrect access control assumptions (U = 7).
These vulnerabilities were related to rules around the delegation
abilities and restrictions of the running principal of the user script
(U = 3), rights management of special principals (U = 2), managing
rights when the recursive delegation chain is broken (U = 1), and
conceptual misunderstandings of rights management for specific
primitive commands (U = 1). Given exploiting Misunderstandings
requires deeper knowledge and specifically crafted exploits, it is
perhaps unsurprising that no single break submitted targeted these
vulnerabilities in any project.

4.3 Mistake
Of the 25 Mistake vulnerabilities present at the end of the build
round, 22 were exploited in the break round making vulnerabilities
due to a Mistake the most likely to be exploited. The exploits of
vulnerabilities from the build round were attributed to insufficient
error checking (E = 13, T = 7), teams skipping a step when imple-
menting security or functionality (E = 6, T = 8), mistakes associated
with the control flow of the application (E = 2, T = 5), and an un-
caught runtime server error (E = 1, T = 3). This mirrors results from
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prior work [82], in which we found that Mistake vulnerabilities are
almost always exploited.

Mistake vulnerabilities were exploited incidentally. Teams
exploited nearly all Mistake vulnerabilities incidentally, while tar-
geting an unrelated vulnerability. T6 exploited a control flow issue
in a team’s code, in which they forgot to remove debugging state-
ments, while attacking the implementation of transitive delegation
in a few teams’ codebases. ThatMistake vulnerabilities were widely
caught incidentally using high-level, broad testing points to the
ability for fuzzers to uncover these vulnerabilities during the de-
velopment phase. Teams only needed to test for basic functionality,
akin to the testing performed by fuzzers, to uncover these Mistakes.
Several teams did not comprehensively test in the build phase, likely
due to time constraints, but were able to build a set of comprehen-
sive tests during the break phase, uncovering many vulnerabilities
in other teams’ code (T = 4). This suggests that with sufficient time
and effort, developers could test for and uncover most Mistake vul-
nerabilities even with minimal security training. This suggests that
in principle developers could use (and generate seeds for) tools like
fuzzers, if the tools were sufficiently available and usable.

Only 3 Mistake vulnerabilities went unexploited. Two were vul-
nerabilities resulting from control flow issues in teams’ programs
and one was from a team skipping a step when implementing secu-
rity checks. Compared to the exploited control flow mistakes and
skipping steps, the unexploited mistakes were buried more deeply
within teams’ code and required very specific tests to exploit.

5 ANALYSIS OF FIXED VULNERABILITIES
(RQ3)

This section describes the details and characteristics of vulnerabili-
ties that were fixed and not fixed. As in the previous section, we
use the vulnerability type descriptions from Section 3.

In total, our participants fixed 66 vulnerabilities in their code
during the build round (T = 12) and 30 vulnerabilities in their code
during the fix round (T = 11). 39 vulnerabilities were left unfixed (19
exploited) at the study’s conclusion. When discussing the (un)fixed
vulnerabilities throughout this section, we use V to represent the
number of vulnerabilities and T to represent the number of teams
that this issue was (not) fixed by. As before, we select illustrative
examples for the three main vulnerability categories, such that V
does not always sum to the total for No Implementations, Misunder-
standings, and Mistakes.

5.1 No Implementation
During the build phase, No Implementation vulnerabilities were
fixed the most (V = 43, T = 11). Most were related to a lack of
implemented access control (V = 22, T = 7). Several teams started
by building their code focused on functionality rather than access
control (T = 7) and added access control further into development.
Generally, these teams started by adding basic access control and
then revisited their code to add checks of the delegation chain (V =
15, T = 6). Five of the six teams that addressed recursive delegation
checks did so within the last 2 days of the build phase. No Implemen-
tation vulnerabilities were largely introduced and fixed as teams
worked through the build phase to implement the requirements

of the specification, starting with All Intuitive requirements and
getting to Unintuitive requirements if there was time left.

No Implementation fixes require restructuring the program.
While many No Implementation vulnerabilities were fixed during
the build phase, over half of them were left unfixed at the conclu-
sion of the study (V = 16, T = 4). Of those left unfixed, seven were
exploited during the break phase. The unfixed vulnerabilities were
caused by missing access control checks (V = 2, T = 1), missing re-
cursive delegation check (V = 3, T = 3), and missing a timeout in the
code (V = 3, T = 3). Three of these vulnerabilities were associated
with T12, including the missing recursive delegation check. T12 did
not implement their access control checks with transitive rights in
mind, failing to include recursive delegation checks and implement-
ing many access control checks throughout the codebase rather
than in one single access control function. Despite exploitation,
this vulnerability remained unfixed within their code, as a fix for
this would have required T12 to significantly alter their codebase,
changing each access control check throughout their codebase and
redoing their entire access control system to account for parent-
child rights. The two other teams with this vulnerability present
in their code at the conclusion of the study required significant
alterations to their codebase to address this vulnerability owing
to the fact that their access control was spread throughout their
codebase. This points to the importance of designing in depth for
access control requirements from the outset, as designing in detail
from the start prevents heavy redesign to address issues later.

5.2 Misunderstanding
During the build phase, vulnerabilities caused by Misunderstanding
access-control requirements were the least likely to be fixed (V
= 9, T = 6). The only Misunderstanding vulnerabilities fixed in
this phase were due to incorrect access control assumptions (V
= 9, T = 6), such as handling on special principals (V = 3, T = 2)
and requirements around who can change a principal’s password
(V = 1, T = 1). Similarly, these were the most likely to be fixed
Misunderstandings in the fix round (V = 10, T = 7).

Misunderstanding vulnerabilities are typically only fixed
when pointed out. Vulnerabilities caused by Misunderstanding
the security requirements were often not found and fixed until
pointed out by either instructor-provided tests (during the build
phase) or submitted exploits against a team’s codebase (during the
break phase). For example, T6 misunderstood the requirements for
parent child rights, but found and fixed this vulnerability during
the build phase because it “didn’t run on a test.”

However, instructor-provided tests only covered fairly basic func-
tionality and failed to test for more complex access-control require-
ments. As a result, more complex Misunderstandings of access con-
trol were often not found until they were exploited in the break
phase. For example, T9 had a vulnerability in their code involving
the delegation of rights. When a user script is submitted to the
system, the script starts by logging in as a principal. This principal
(PA) may delegate rights to another principal (PC) through the use
of a third principal (PB). This is not a problem as long as the permis-
sions of PB are checked and they have the necessary permissions.
However, T9 misunderstood this requirement and only checked
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the permissions of the running principal (PA). This vulnerability
was not fixed by this team until it was exploited during the break
round, despite the fact that T9 directly altered the code containing
this vulnerability twice before the conclusion of the build round.
Receiving detailed input about security misunderstandings in their
code allowed T9 to address this issue and understand where they
went wrong. Overwhelmingly, Misunderstanding vulnerabilities
were fixed once they were pointed out and explained to teams
(V = 13, T = 8), pointing to the benefit of including explanation
of security Misunderstandings in the development process. Teams
demonstrated the ability to learn from these explanations by craft-
ing tests for other teams based on what had been exploited in their
own code. For example, T6 began testing other teams for a vulnera-
bility related to incorrectly removing rights once a delegation chain
had been broken after this Misunderstanding was exploited and
fixed in their own codebase. They said they found the vulnerability
because it was a “break [in my code] found by [an] enemy team.”

AddressingMisunderstandings requires time. Similar to the
build phase, vulnerabilities caused by a security requirement Mis-
understanding were left unfixed the most at the conclusion of the
study (V = 11, T = 9). Three of these vulnerabilities were exploited
during the break phase. These exploited vulnerabilities were due to
incorrect assumptions about the access control requirements (V = 3,
T = 4). Teams did not design at all for these vulnerabilities (V = 3, T
= 3), and two of these vulnerabilities were submitted in the last day
of the break phase, leaving teams little time to address something
they had not designed for.

5.3 Mistake

Mistake vulnerabilities are found and fixed with testing. Dur-
ing the build phase, vulnerabilities caused by an implementation
Mistake were mostly left unfixed (V = 14, T = 6). The most fre-
quently fixed were related to control-flow errors (V = 12, T = 5).
These vulnerabilities were easy to find through testing, as seen by
break teams exploiting them incidentally using a variety of tests.

Conversely, vulnerabilities related to insufficient error checking
(V = 6, T = 4) and missing an implementation step (V = 3, T = 3) were
the most fixedMistakes in the fix phase. Teams that did not think to
handle edge cases related to insufficient error checking or skipped
algorithmic steps were, unsurprisingly, also unlikely to think to test
for these cases while building. Five of these vulnerabilities were
exploited in the last day of the break phase, leaving teams little time
to address them despite how easy many fixes could be. For example,
a vulnerability in T7’s code caused by insufficient error checking
was exploited on the second-to-last day of the break phase. T7 had
failed to check certain commands for syntactic validity, leading to
a crash if these commands were improperly formatted. T7 already
had a function to check for syntactic validity, so this vulnerability
could have been fixed by adding a single line of code invoking
this already-existing function in an additional place. However, this
vulnerability went unfixed in the short available time window.

Addressing more complex vulnerabilities leaves little time
to address simple Mistakes. Eleven Mistake vulnerabilities were
unfixed in our participants’ code (V = 12, T = 6) at the conclusion of
the study. Nine of these Mistakes were exploited. These exploited

vulnerabilities were divided among a vulnerability due to insuffi-
cient error checking (V = 6, T = 3) and skipping an algorithmic step
while implementing security (V = 3, T = 3). Two of the teams with
unfixed Mistakes had the most and second most successful breaks
against them during the break phase leaving them with many is-
sues to address with limited time. Additionally, two teams fixed
vulnerabilities caused by a lack of timeout and recursive delegation
check, which took considerable time to address. Despite the relative
ease of addressing mistakes, teams may not have had time to get to
them before the conclusion of the study.

Most unfixed vulnerabilities are easy to exploit. To explore the
possible repercussions of unfixed vulnerabilities, we look at how
attacking teams and members of the research team (with security
experience) rated the difficulty to find and exploit these unfixed
vulnerabilities. Overall, we find that, of those that they did rate,
teams rated many unfixedMistake vulnerabilities as easy to find and
exploit (Find = 7/7 and Exploit = 6/6). Given that Mistakes were the
least unfixed of any vulnerability, this is not particularly concerning.
However, vulnerabilities associated with Misunderstandings were
also overwhelmingly rated as easy to find and exploit by our teams
(Find = 8/12 and Exploit = 10/12). Our experts rated Misunderstand-
ing vulnerabilities as less easy to find and exploit than participants
(Find = 5/12, Exploit = 7/12), but this points to a possibly alarm-
ing trend in which vulnerabilities that are difficult to fix and often
weren’t fixed until exploited are an easy point of exploitation for
possible attackers. Once the vulnerability was discovered, it was
easy to craft an exploit. For example, T9 had an unfixed vulnera-
bility associated with removing rights transitively. An exploit for
this could easily be crafted in two user-issued scripts, whereas the
fix would require rewriting the access control functionality of the
system, meaning the effort required from an attacker is minimal,
but addressing the vulnerability requires significant changes to the
design and implementation of the system.

6 DISCUSSION AND RECOMMENDATIONS
Our results emphasize the importance of existing recommendations
and solutions.

Vulnerability classes differ inmore than just content.Through-
out our data we note that the different types of vulnerabilities (No
Implementation, Misunderstanding, and Mistake) fall into distinct
classes. These vulnerabilities occur differently from one another: No
Implementations result from a failure to realize that a feature was
needed whereas Mistakes result from a failure to thoroughly test
the codebase. These vulnerabilities are found differently from one
another: Misunderstandings were found through explicitly crafted
tests whereas Mistakes were found incidentally, while testing for
a completely unrelated vulnerability. Each of these vulnerabilities
needs their own strategy to prevent and address: thorough, well
thought out design to address No Implementations, consultation
and assistance from security experts to address Misunderstand-
ings, and broad, complete testing to address Mistakes. Employing
a single secure development strategy is not sufficient enough to
prevent all three classes of vulnerabilities, and a variety of strategies
and solutions will be necessary to promote secure development.
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Throughout the discussion, we’ll talk in detail about solutions for
the three different classes of vulnerabilities.

Importance of using security tools and comprehensive test-
ing to uncoverMistakes confirmed. Nearly every team had at
least one Mistake vulnerability at the conclusion of the build round
(many teams more than one). These vulnerabilities were nearly all
exploited during the break round, often incidentally through test-
ing for other vulnerabilities, and were largely attributed to teams
not testing for or considering an edge case or null value. These
vulnerabilities can generally be caught or prevented by existing
secure development tooling such as secure programming languages,
fuzzers, and static analyzers [5, 8, 9, 22, 27, 43, 50, 67, 77, 78].

Teams often struggled to thoroughly test their code for vulnera-
bilities during the build round but comprehensively tested other
teams’ code during the break round, finding and exploiting a vari-
ety of vulnerabilities. This points to a lack of priority for testing
their own code thoroughly, but not a lack of knowledge to do so.
Possibly if teams were given more time to complete their project,
they would have used this time to perform thorough testing on
their own codebase. This highlights that developers likely do not
lack the knowledge to thoroughly test their code, given the time
and encouragement to do so.

Importance of incremental development andminimally trusted
code reaffirmed. Our results suggest the importance of following
several security best practices. Teams that worked incrementally
on security and built for security and functionality simultaneously,
rather than focusing on functionality and then security, introduced
less vulnerabilities in their code throughout the build round. No-
tably, teams with a good design that waited to implement secu-
rity had more vulnerabilities than some teams with minimal or
no design that started early on security. However, starting early
on security did not make up for conceptual misunderstandings of
security requirements.

Additionally, how teams built their security code played an im-
portant role. We note that teams that failed to fix vulnerabilities
related to the transitivity of the access control system had individ-
ual access control checks for each command rather than building
one function. This meant that when these teams wanted to fix this
vulnerability they had to redesign their entire system. Moreover,
every team that failed to handle the transitive nature of the access
control system implemented their access control checks in this way.
This fails to follow the security recommendation of minimal trusted
code [15] and points to the benefit of of following best practices in
implementing security code.

Detailed design is important to secure development, but not
a silver bullet. Design appeared to play an important part in the
security of our participants’ code. More broadly, we found that
teams with a detailed design were less likely to miss implementing
access control and make mistakes. Teams that misunderstood a
sub-case or sub-requirement of an access control check did not
design for the requirement at all. However, detailed design isn’t
a silver bullet. If teams encoded an initial Misunderstanding, they
aren’t likely to catch the vulnerability at implementation as they
were likely to stick with their designs. A detailed design is impor-
tant to the secure development process as it helps prevent missing

security requirements or introducing programming mistakes, but
it is important to ensure the design is secure from the start.

Importance of including security experts in development life-
cycle to help uncover Misunderstandings. Our results suggest
that participants struggle more with misunderstanding security
concepts than implementing them. This echoes prior work [82]
and points to a need for security expertise within the development
process. Teams encoded these misunderstandings into their design
documents and failed to catch them at implementation time. They
often attributed these vulnerabilities to a fundamental misunder-
standing of the security requirements, and they were unable to
understand them and address them until they were pointed out and
explained to them (exploited during the break round). Once the
breaking team pointed out and explained the vulnerability, Misun-
derstandings were almost unanimously fixed. The ability to have
the vulnerability explained to them allowed teams to address these
issues, improving the resulting security of the code. The presence of
a security-knowledgeable developer or security professional during
the design process to help point to these vulnerabilities and explain
their importance and severity can improve the security knowledge
of developers, while simultaneously improving the security of the
codebase.

7 RELATEDWORK
In prior work, we used the BIBIFI contest to explore factors re-
lating to secure development, using post-hoc analysis of contest
submissions [66, 82]. This paper extends this work through analysis
of development processes, allowing us to uncover how and why
vulnerabilities are introduced into code, collecting context without
relying on participants to recall experiences later.

This paper also complements other prior work examining the
introduction and discovery of vulnerabilities, as well as the incor-
poration of security into the development lifecycle.

Measuring vulnerabilities through metadata. Prior research
has leveraged metadata available in version-management systems
to explore the introduction, identification, and remediating of vul-
nerabilities. While investigating the data associated with commits
from PHP and the Apache HTTP server, Meneely et al. found that
codebases with new committing authors, higher-than-average num-
ber of commits, and committers that edit others’ code were asso-
ciated with more frequent vulnerabilities [44, 46]. In follow-up
work, they explored whether Linus’ Law, that having more eyes
on code improves its quality, applies to vulnerabilities [45]. Investi-
gating Chromium, the authors found that source code reviewed by
more developers was more likely to have a vulnerability remaining,
unless the reviewer had prior vulnerability patching experience.
Within the OpenBSD operating system, Ozment and Schechter in-
vestigated whether vulnerabilities were introduced during initial
feature development or changes committed later, finding that more
than half of all reported vulnerabilities were introduced during ini-
tial development [62]. Other work has considered the relationship
of vulnerabilities to associated code dependencies and segments
of the code base, in Eclipse [69], Firefox [58], Windows Vista [83],
and RedHat packages [57], finding that vulnerabilitys tended to
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cluster in particular components. Similarly, there has been signif-
icant work investigating vulnerability lifecycles, measuring the
time between when a vulnerability is found and when it is reme-
diated [3, 20, 40, 56, 71], investigating the correlation of similar
metrics with delays in patch time. Measurements like these enable
a high-level view of vulnerability characteristics; we expand on
these findings by directly observing development processes, within
a fixed project specification, to more concretely learn why and how
vulnerabilities occur.

Measuring vulnerabilities through user studies. In addition to
measuring production code, researchers also investigate software
security by studying developers. Exploring how cryptographic API
usability impacts code security, Acar et al. conducted a controlled
experiment with developers, uncovering that APIs designed for us-
ability can help improve the security of resulting code [1]. Oliveira
et al. identified how developers’ “blind spots” about how an API
works correlate with decreased ability to answer security questions
or identify security problems in associated code [61]. Naiakshina
et al. found that freelance developers did not store passwords se-
curely without prompting, had misconceptions about how to store
passwords securely, and often used outdated approaches [53].

Ourwork complements these studies; a larger, cooperative project
over a longer timeframe provides additional ecological validity for
observing how vulnerabilities are introduced, found, and fixed.

Security during the development process. Some research has
aimed to broadly understand security in the software development
lifecycle. Assal and Chiasson interviewed professional developers,
finding a wide range of security practices that often diverged from
accepted best practices [6]. Follow-on work, using a survey of 123
North American developers, found developers are often motivated
to write secure code but face organizational obstacles [7].

Exploring company-specific secure-development practices, Haney
et al. used 21 interviews to understand organizational challenges
during development of products that include cryptography [30].
They found that these developers exhibited a strong security mind-
set that informs organizational best practices and encourages edu-
cational initiatives to expand organizational security knowledge. To
understand how security strategies broadly (bug bounty programs,
red, blue, and purple teams, and third-party contractors) are applied
in practice and the associated challenges, Alomar et al. interviewed
53 security practitioners tasked with vulnerability discovery. They
found that vulnerability discovery is often stymied by costs, staffing
issues, trust, and communication [4].

In an ethnographic study, Palombo et al. embedded a researcher
into a software company for 1.5 years to study secure-development
practices. They found developers sometimes do not fix, or even
intentionally introduce, vulnerabilities because of business pres-
sures. [63]. In follow-up ethnographic work, Tuladhar et al. ob-
served a shift in secure development practices when developers un-
derstood how security applied specifically to their areas of work [81].

Our work complements these studies in a more controlled ob-
servational environment than an ethnographic study, without re-
quiring as much self-reporting and recall as interviews or surveys.

8 CONCLUSION
Secure software development is a challenging task. To prioritize
among security solutions and provide the most help to developers,
we must understand how and why developers introduce vulnerabil-
ities, as well as how and why they are (not) found and fixed during
software testing. To this end, we conducted an in-depth study of 14
teams’ development processes during a three-week undergraduate
course as they built a software-based home-IoT controller, attacked
other teams’ code, and fixed exploited vulnerabilities within their
own code. We collected a wide variety of data throughout different
portions of the course, allowing us insight into participants’ thought
processes and decision making. We uncover trends associated with
the introduction, discovery, and fixing of three importantly distinct
classes of vulnerabilities. We build a small taxonomy of introduced,
exploited, and fixed vulnerabilities and uncover several trends that
may influence the introduction, discovery, and fixing of vulnerabil-
ities. Design appears to play an important role in the introduction
of vulnerabilities: teams with a detailed design stuck with their
design despite the presence of Misunderstanding vulnerabilities
present, and teams with a detailed design tended to introduce less
vulnerabilities overall. Broad testing was useful for uncoveringMis-
takes and No Implementations, but targeted testing was necessary
for uncovering Misunderstandings. Overall, our results reaffirm the
importance of secure development best practices.
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