
UNDERSTANDING THE HOW AND THE 
WHY: EXPLORING SECURE 
DEVELOPMENT PRACTICES 

THROUGH A COURSE COMPETITION
Kelsey Fulton, Daniel Votipka, Desiree Abrokwa, 

Michelle Mazurek, Michael Hicks, and James Parker

1



Secure development is difficult

2Year

Di
st

rib
ut

io
n 

of
 v

ul
ns

Severity



Many solutions exist!

‣ Secure tools

‣ Secure training/

education

‣ Better integration of 

security

3

How do we help companies 
prioritize solutions?



We need to understand why and how 
different types of vulnerabilities get 

introduced, found, and fixed?

4



We need to understand why and how 
different types of vulnerabilities get 

introduced, found, and fixed?

5



We need to understand why and how 
different types of vulnerabilities get 

introduced, found, and fixed?

6



Prior work

‣ Analyzed code submitted to BIBIFI

7



Build it, Break it, Fix it (BIBIFI)
Secure programming competition:

■ Build-it 

■ Build to a secure spec with open choices

■ Earn points for performance and functionality


■ Break-it 
■ Other teams’ code made available

■ Submit exploits against other teams


■ Fix-it 
■ Update their code to fix submitted vulnerabilities 

8[Ruef et al., 2016]



Prior work

‣ Analyzed code submitted to BIBIFI

‣ 94 projects


‣ Building in-depth taxonomy of vulnerabilities

‣ Uncovering characteristics of vulnerabilities

‣ Unable to uncover

9



Prior work

‣ Analyzed code submitted to BIBIFI

‣ Building in-depth taxonomy of vulnerabilities

‣ Uncovering characteristics of vulnerabilities

‣ Unable to uncover how

10



Prior work

‣ Analyzed code submitted to BIBIFI

‣ Building in-depth taxonomy of vulnerabilities

‣ Uncovering characteristics of vulnerabilities

‣ Unable to uncover how and why

11



Research questions

‣ What type of vulnerabilities do developers 
introduce and why?


‣ What types of vulnerabilities are found during 
review and why?


‣ Why and how do developers fix different types of 
vulnerabilities?

12



Methods
‣ Used BIBIFI in 3 week long course


‣ Spent approx. 1 week in each phase

‣ 14 teams composed of undergrads


‣ Juniors/seniors

‣ Participants had minimal security/development 

experience

‣ Participants were not expected to have prior security 

exp

‣ Took core systems course

‣ Had short lectures on security and threat modeling

13



Methods
‣ Collected fine-grained data


‣ Design documents (multiple times)

‣ Snapshots of code as they developed

‣ Submitted exploits and fixes

‣ Commit messages throughout build, break, fix

14



Methods
‣ Collected fine-grained data


‣ Design documents (multiple times)

‣ Snapshots of code as they developed

‣ Submitted exploits and fixes

‣ Commit messages throughout build, break, fix

15



Methods
‣ Collected fine-grained data


‣ Design documents (multiple times)

‣ Snapshots of code as they developed

‣ Submitted exploits and fixes

‣ Commit messages throughout build, break, fix


‣ Analyzed data using:

‣ Manual code review for vulnerabilities

‣ Qualitative coding

16



IoT smart home

‣ Runs user scripts 

‣ All data protected by RBAC


‣ Customizable by special users and data owner

‣ Other users receive permissions

17



Overview of vulnerabilities

18

No implementation Misunderstanding Mistake

Failed to implement 
necessary AC 
requirement

Implemented 
security; 

misunderstood 
requirement

Implemented 
security; made 
programming 

mistake



Research questions

‣ What type of vulnerabilities do developers 
introduce and why?


‣ What types of vulnerabilities are found during 
review and why?


‣ Why and how do developers fix different types of 
vulnerabilities?

19



Impact of design on security
‣ Teams with detailed initial designs tended to 

introduce fewer vulnerabilities

‣ Specifically No Implementation and Mistakes


‣ Teams with detailed initial designs tended to stick 
with them

‣ Even if the initial design had a vulnerability

‣ Especially prevalent with Misunderstandings

20



Impact of timeline on security

‣ Teams with fewest vulnerabilities tended to work 
on security throughout


‣ Teams that waited to work on security ran out of 
time

‣ Resulting in many vulnerabilities

21



Impact of timeline on security

22

Days into build round Days into build round

Functionality commits

Security commits

Fewest vulns overall Fourth most vulns overall



Research questions

‣ What type of vulnerabilities do developers 
introduce and why?


‣ What types of vulnerabilities are found during 
review and why?


‣ Why and how do developers fix different types of 
vulnerabilities?

23



Different vulnerabilities are 
discovered differently
‣ No Implementations found when looking broadly for 

related problem

‣ Found one access control vulnerability while 

attempting to exploit another

‣ Mistakes were found through broad testing


‣ Emulating the use of a fuzzer

‣ Misunderstandings required targeted testing


‣ Many left unexploited
24



Research questions

‣ What type of vulnerabilities do developers 
introduce and why?


‣ What types of vulnerabilities are found during 
review and why?


‣ Why and how do developers fix different types of 
vulnerabilities?

25



Different vulnerabilities are fixed 
differently
‣ Half of No Implementations left unfixed at end of 

study

‣ Rearchitecting whole system


‣ Misunderstandings were rarely fixed until 
exploited

‣ But were overwhelmingly fixed once exploited

26



Implications
‣ Vulnerabilities differ in more than content


‣ No “one size fits all” solution

‣ Importance of best practices


‣ Incremental development

‣ Detailed design


‣ Including security experts at beginning of 
development cycle

27

Questions: 
kfulton@umd.edu

https://www.cs.umd.edu/~kfulton/

I am on the job market this year!

mailto:kfulton@umd.edu
https://www.cs.umd.edu/~kfulton/

