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Secure development is difficult
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Many solutions exist!

‣ Secure tools

‣ Secure training/

education

‣ Better integration of 

security
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How do we help companies 
prioritize solutions?



We need to understand why and how 
different types of vulnerabilities get 

introduced, found, and fixed?
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Prior work

‣ Analyzed code submitted to BIBIFI
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Build it, Break it, Fix it (BIBIFI)
Secure programming competition:

■ Build-it 

■ Build to a secure spec with open choices

■ Earn points for performance and functionality


■ Break-it 
■ Other teams’ code made available

■ Submit exploits against other teams


■ Fix-it 
■ Update their code to fix submitted vulnerabilities 
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Prior work

‣ Analyzed code submitted to BIBIFI

‣ 94 projects


‣ Building in-depth taxonomy of vulnerabilities

‣ Uncovering characteristics of vulnerabilities

‣ Unable to uncover
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Prior work

‣ Analyzed code submitted to BIBIFI

‣ Building in-depth taxonomy of vulnerabilities

‣ Uncovering characteristics of vulnerabilities

‣ Unable to uncover how and why
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Research questions

‣ What type of vulnerabilities do developers 
introduce and why?


‣ What types of vulnerabilities are found during 
review and why?


‣ Why and how do developers fix different types of 
vulnerabilities?
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Methods
‣ Used BIBIFI in 3 week long course


‣ Spent approx. 1 week in each phase

‣ 14 teams composed of undergrads


‣ Juniors/seniors

‣ Participants had minimal security/development 

experience

‣ Participants were not expected to have prior security 

exp

‣ Took core systems course

‣ Had short lectures on security and threat modeling
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Methods
‣ Collected fine-grained data


‣ Design documents (multiple times)

‣ Snapshots of code as they developed

‣ Submitted exploits and fixes

‣ Commit messages throughout build, break, fix
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Methods
‣ Collected fine-grained data


‣ Design documents (multiple times)

‣ Snapshots of code as they developed

‣ Submitted exploits and fixes

‣ Commit messages throughout build, break, fix


‣ Analyzed data using:

‣ Manual code review for vulnerabilities

‣ Qualitative coding
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IoT smart home

‣ Runs user scripts 

‣ All data protected by RBAC


‣ Customizable by special users and data owner

‣ Other users receive permissions
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Overview of vulnerabilities
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No implementation Misunderstanding Mistake

Failed to implement 
necessary AC 
requirement

Implemented 
security; 

misunderstood 
requirement

Implemented 
security; made 
programming 

mistake



Research questions

‣ What type of vulnerabilities do developers 
introduce and why?


‣ What types of vulnerabilities are found during 
review and why?


‣ Why and how do developers fix different types of 
vulnerabilities?
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Impact of design on security
‣ Teams with detailed initial designs tended to 

introduce fewer vulnerabilities

‣ Specifically No Implementation and Mistakes


‣ Teams with detailed initial designs tended to stick 
with them

‣ Even if the initial design had a vulnerability

‣ Especially prevalent with Misunderstandings
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Impact of timeline on security

‣ Teams with fewest vulnerabilities tended to work 
on security throughout


‣ Teams that waited to work on security ran out of 
time

‣ Resulting in many vulnerabilities
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Impact of timeline on security
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Days into build round Days into build round

Functionality commits

Security commits

Fewest vulns overall Fourth most vulns overall



Research questions

‣ What type of vulnerabilities do developers 
introduce and why?


‣ What types of vulnerabilities are found during 
review and why?


‣ Why and how do developers fix different types of 
vulnerabilities?

23



Different vulnerabilities are 
discovered differently
‣ No Implementations found when looking broadly for 

related problem

‣ Found one access control vulnerability while 

attempting to exploit another

‣ Mistakes were found through broad testing


‣ Emulating the use of a fuzzer

‣ Misunderstandings required targeted testing


‣ Many left unexploited
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Different vulnerabilities are fixed 
differently
‣ Half of No Implementations left unfixed at end of 

study

‣ Rearchitecting whole system


‣ Misunderstandings were rarely fixed until 
exploited

‣ But were overwhelmingly fixed once exploited
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Implications
‣ Vulnerabilities differ in more than content


‣ No “one size fits all” solution

‣ Importance of best practices


‣ Incremental development

‣ Detailed design


‣ Including security experts at beginning of 
development cycle
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Questions: 
kfulton@umd.edu

https://www.cs.umd.edu/~kfulton/

I am on the job market this year!
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