
BENEFITS AND DRAWBACKS OF 
ADOPTING A SECURE 

PROGRAMMING LANGUAGE: RUST 
AS A CASE STUDY

Kelsey Fulton, Anna Chan, Daniel Votipka, 
Michelle Mazurek, Michael Hicks

1



Memory safety vulnerabilities 
remain a problem
■ 70% of vulnerabilities in 

Chrome are memory safety 
problems (May 2020)


■ 70% of vulnerabilities in 
Microsoft products are memory 
safety problems (2002 - 2019)


■ C/C++ source of most of 
these bugs

2
Fix or replace (or both)

Google / https://www.zdnet.com/article/chrome-70-

of-all-security-bugs-are-memory-safety-issues/ 



Case Study: Rust

■ Attempt safety and performance (e.g., no GC)

■ Useful where C/C++ are hardest to replace


■ What does the adoption of secure programming languages look 
like?


■ What benefits (if any) accrue after the adoption of a secure 
programming language?

3



Case Study: Rust

■ Semi-structured interview with senior developers (I = 16)

■ Survey with Rust community (S = 178)

4



Learning Rust

■ Rust is hard to learn. 

5



Rust has “a near-vertical learning curve.”

6



Learning Rust

■ Rust is hard to learn. 

■ Rust is more difficult to learn than other languages

7



Learning Rust

■ Rust is hard to learn. 

■ Rust is more difficult to learn than other languages


■ Easy to find solutions to problems

8



Learning Rust

■ Rust is hard to learn. 

■ Rust is more difficult to learn than other languages


■ Easy to find solutions to problems

■ Good compiler error messages

9



“Most of the time the compiler is very, 
very good at telling you exactly what the 

problem is”

10



Learning Rust

■ Rust is hard to learn. 

■ Rust is more difficult to learn than other languages


■ Easy to find solutions to problems 

■ Good compiler error messages 

■ Good official documentation

11



Learning Rust

■ Rust is hard to learn. 

■ Rust is more difficult to learn than other languages


■ Easy to find solutions to problems 

■ Good compiler error messages 

■ Good official documentation

■ Helpfulness of community

12



Positive Impact on 
Development
■ Improves confidence in code correctness

■ Improves long-term productivity

■ Improves safe development in other languages 


■ By adjusting developer mindset

13



“Once you learn Rust, you are one with the 
borrow checker — it never leaves you. I now see 
many of the unsafe things I have been doing in 
other languages for years, (but probably not all 
of them, as I am human and not a compiler).”

14



Employer Concerns

■ Specific to Rust:

■ Steep learning curve

15



Employer Concerns

■ Specific to Rust:

■ Steep learning curve

■ Difficulty hiring Rust developers

16



“Do we really want to keep this thing in 
Rust? It’s hard to find a new person for the 
team. . . because we don’t have . . . a huge 

pool of Rust programmers.”

17



Participants’ Advice

■ Demonstrate value of Rust

■ Offers measurable improvement


■ Be helpful and have a good support system

■ Willing and able to help new developers

■ Support system for new Rust developers

18



Takeaways

■ Documentation, community, and feedback matter a lot!

■ Steep learning curve can inhibit adoption


■ Pay now, but (maybe) benefit later

■ Flatten the learning curve?

■ Reduce the risk of investment

19

Questions: 
kfulton@umd.edu


http://www.cs.umd.edu/~kfulton/

https://sec-professionals.cs.umd.edu/


Twitter - @kfulton121

mailto:kfulton@umd.edu
http://www.cs.umd.edu/~kfulton/
https://sec-professionals.cs.umd.edu/

