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Memory safety vulnerabilities 
remain a problem
■ 70% of vulnerabilities in 

Chrome are memory safety 
problems (May 2020)


■ 70% of vulnerabilities in 
Microsoft products are memory 
safety problems (2002 - 2019)


■ C/C++ source of most of 
these bugs
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Fix or replace (or both)

Google / https://www.zdnet.com/article/chrome-70-

of-all-security-bugs-are-memory-safety-issues/ 



Case Study: Rust

■ Attempt safety and performance (e.g., no GC)

■ Useful where C/C++ are hardest to replace


■ What does the adoption of secure programming languages look 
like?


■ What benefits (if any) accrue after the adoption of a secure 
programming language?
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Case Study: Rust

■ Semi-structured interview with senior developers (I = 16)

■ Survey with Rust community (S = 178)
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Learning Rust

■ Rust is hard to learn. 
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Rust has “a near-vertical learning curve.”

6



Learning Rust

■ Rust is hard to learn. 

■ Rust is more difficult to learn than other languages

7



Learning Rust

■ Rust is hard to learn. 

■ Rust is more difficult to learn than other languages


■ Easy to find solutions to problems

8



Learning Rust

■ Rust is hard to learn. 

■ Rust is more difficult to learn than other languages


■ Easy to find solutions to problems

■ Good compiler error messages

9



“Most of the time the compiler is very, 
very good at telling you exactly what the 

problem is”
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Learning Rust

■ Rust is hard to learn. 

■ Rust is more difficult to learn than other languages


■ Easy to find solutions to problems 

■ Good compiler error messages 

■ Good official documentation

■ Helpfulness of community
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Positive Impact on 
Development
■ Improves confidence in code correctness

■ Improves long-term productivity

■ Improves safe development in other languages 


■ By adjusting developer mindset
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“Once you learn Rust, you are one with the 
borrow checker — it never leaves you. I now see 
many of the unsafe things I have been doing in 
other languages for years, (but probably not all 
of them, as I am human and not a compiler).”
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Employer Concerns

■ Specific to Rust:

■ Steep learning curve
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Employer Concerns

■ Specific to Rust:

■ Steep learning curve

■ Difficulty hiring Rust developers
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“Do we really want to keep this thing in 
Rust? It’s hard to find a new person for the 
team. . . because we don’t have . . . a huge 

pool of Rust programmers.”
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Participants’ Advice

■ Demonstrate value of Rust

■ Offers measurable improvement


■ Be helpful and have a good support system

■ Willing and able to help new developers

■ Support system for new Rust developers
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Takeaways

■ Documentation, community, and feedback matter a lot!

■ Steep learning curve can inhibit adoption


■ Pay now, but (maybe) benefit later

■ Flatten the learning curve?

■ Reduce the risk of investment
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Questions: 
kfulton@umd.edu


http://www.cs.umd.edu/~kfulton/

https://sec-professionals.cs.umd.edu/


Twitter - @kfulton121
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