Write, Read, or Fix?
Exploring Alternative Methods for Secure Development Studies

Kelsey R. Fulton*", J oseph Lewis®, Nathan Malkin™", Michelle L. Mazurek®
*Colorado School of Mines; °University of Maryland; " New Jersey Institute of Technology

Abstract

When studying how software developers perform security
tasks, researchers often ask participants to write code. These
studies can be challenging because programming can be time-
consuming and frustrating. This paper explores whether alter-
natives to code-writing can yield scientifically valid results
while reducing participant stress. We conducted a remote
study in which Python programmers completed two encryp-
tion tasks using an assigned library by either writing code
from scratch, reading existing code and identifying issues, or
fixing issues in existing code. We found that the read and fix
conditions were less effective than the write condition in re-
vealing security problems with APIs and their documentation,
but still provided useful insights. Meanwhile, the read and
especially fix conditions generally resulted in more positive
participant experiences. Based on these findings, we make
preliminary recommendations for how and when researchers
might best use all three study design methods; we also recom-
mend future work to further explore the uses and trade-offs
of these approaches.

1 Introduction

Secure software development is a difficult task, as demon-
strated by the many vulnerabilities discovered in production
code on a regular basis [12,29,35]. Key causes of these vul-
nerabilities include developers failing to use the right tools or
resources [4,19,31,32,42], making mistakes when writing

“Work done while at University of Maryland

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

USENIX Symposium on Usable Privacy and Security (SOUPS) 2024.
August 11-13, 2024, Philadelphia, PA, United States.

code [52], or fundamentally misunderstanding necessary and
important security concepts [19, 31, 52]. Addressing these
challenges requires better understanding them; to wit, study-
ing how developers approach secure development and how
and why errors occur.

How best to conduct these studies, however, remains in
some respects an open challenge. Many secure-development
studies rely on code-writing tasks in order to observe develop-
ers’ processes, decisions, and missteps [3,19,30,41,52]. These
studies produce valuable results, but they can be very challeng-
ing to conduct: code-writing tasks are time-consuming and
difficult to scope narrowly for lab experiments, and ecological
validity is challenging because professional software develop-
ment environments are hard to simulate [4,40]. Further, the
specialized population of software developers can be chal-
lenging to recruit and retain: they are difficult to reach, and
they participate in studies outside their normal work hours,
often for hourly rates much lower than their regular pay for
software engineering [31,45]. Frustration while participating
in such studies can lead to high dropout rates, resulting in
smaller, less powerful sample sizes [2].

Given this context, it is imperative for secure-development
researchers to understand whether there are alternative ap-
proaches to conducting code writing studies that—at least
for some research questions and contexts—will yield simi-
lar, scientifically valid results while reducing the stress and
frustration for participants and researchers. As a first step to
address this problem, Danilova et al. explored the possibil-
ity of substituting code review for code writing: participants
wrote code reviews about snippets from a prior study about
secure password storage [16]. The results indicated that code
reviewing studies are potentially useful in addressing certain
types of secure-development research questions.

Here, we build on this result with another exploratory study,
this time investigating both reading and fixing insecure code
as methodological alternatives to code writing. In contrast
to Danilova et al., we directly compare these methods, mea-
suring both secure-development outcomes and participants’
experiences taking part in the study.

Specifically, we conducted a remote experimental study in
which 112 Python programmers completed two symmetric
encryption tasks (generating/storing a key and encrypting/de-
crypting data) using one of two encryption libraries. These
study tasks were modeled on an earlier study by Acar et
al. that measured the usability of various Python encryption
APIs [2]. Participants were each assigned to one of three
methodological conditions: writing secure code from scratch
(Write), reading existing code and finding and explaining
vulnerabilities and bugs (Read), or finding and fixing vulner-
abilities and bugs in existing code (Fix). Participants then
completed a survey about their experience taking part in the
study.

Using this study, we address two key research questions:

RQ1 Do the Read and Fix conditions provide the same results
about functionality and security as the Write condition?

RQ2 Do participants in the Read and Fix conditions experi-
ence fewer negative effects (drop-out rate, frustration,
time to complete) than those in the Write condition?

We found that Read and Fix were less effective than Write in
revealing security problems with APIs and their documenta-
tion. Participants in the Fix condition were particularly likely
to focus only on getting code to run and pass provided tests;
as such, they identified a much narrower set of vulnerabilities
than Read participants. However, when they did identify vul-
nerabilities, Fix participants’ attempts to remediate them did
reveal interesting shortcomings in API documentation. Both
the Read and Fix conditions provided insight into the kinds
of vulnerabilities participants could recognize and remediate,
in lower- and higher-effort scenarios respectively.

Overall, participants in the Read and Fix conditions re-
ported more positive study experiences than Write partici-
pants, including more fun and less frustration. While partici-
pants in the Read condition spent slightly less time working
on the study than those in the Write condition, participants in
the Fix condition spent substantially less time.

Based on our qualitative and quantitative observations, we
make preliminary recommendations for how and when re-
searchers might best use all three study-design methods; we
also recommend future work to further explore the uses and
trade-offs of these approaches. Our exploratory study tests
one possible implementation of Write, Read, and Fix study
designs, in one experimental context aimed at answering a spe-
cific question about comparing APIs. As such, it cannot fully
answer all questions about how and when it may be appro-
priate to deploy these methods. Nonetheless, we believe our
study makes a valuable contribution to the ongoing evolution
of best practices for empirical studies of secure development.

2 Related work

Prior research has explored how to recruit developers for
studies and measure their efforts.

Participant recruitment. Prior work has studied the validity
of varying recruitment approaches. Yamashita et al. explored
the use of freelance marketplaces to recruit participants, con-
cluding that while these services offer flexibility, low cost,
and access to a wide population, there is uncertainty about
developers’ background and skills [53]. Baltes et al. evalu-
ated the use of various sampling methodologies for software
development studies, finding that sampling through public
media yielded the best results [9]. Acar et al. explored the use
of GitHub as a recruitment tool for studies by recruiting 307
active GitHub users to complete security-related program-
ming tasks, finding no statistical difference for functionality
or security between participants that were students and pro-
fessionals [5]. To provide insight into the ecological validity
of using computer science students in developer studies, Na-
iakshina et al. recruited professional software developers to
complete programming problems from a prior study [31] and
compared the results [30], finding that developers performed
better than students and freelancers, but the treatment effects,
such as prompting for security, held the same for developers
and students. Similarly, Salman et al. discovered that students
and professionals do not produce substantially different re-
sults in software studies [43].

Most recently, researchers have compared and contrasted
a variety of recruitment venues, finding that crowdsourcing
platforms require screening to get high-quality participants
and that CS students at a variety of educational stages are a
viable alternative for developers [25,48]. To understand why
professional developers may or may not participate in security
studies, Serafini et al. conducted interviews with 30 devel-
opers and found that the length of the study, the topic of the
study, compensation, and trust in the researchers had an im-
pact on participation [45]. Interviewees were also concerned
about their performance on security tasks.

Measuring developers’ skill. Prior work has explored
the construction of scales and survey questions to evalu-
ate the skills of participants in software developer studies.
Feigenspan et al. constructed a scale to measure program-
ming experience of study participants by using questions
from published studies that evaluated programming experi-
ence [17]. Comparing the participants’ answers, they found
self-efficacy to be an effective way to measure programming
experience. Similarly, Bergersen et al. built a scale to measure
programming experience by having 65 professional develop-
ers complete 19 Java programming exercises [10].

To aid in recruitment, Danilova et al. expanded this idea by
building a screening questionnaire to help filter participants in
programming studies, concluding with 6 recommended ques-
tions [15]. In follow-on work, they explored the use of time
limits to increase the efficiency of screening questionnaires,
concluding that implementing a time limit saves time and
money while maintaining validity [13]. Focusing on measur-

ing security experience, Votipka et al. built a 15-item scale to
measure the security self-efficacy of software developers [51].

Study design for secure development studies. Recent work
has explored the use of a priori power calculations in the de-
sign of secure development studies, finding that many prior de-
veloper studies were underpowered to detect large effects [36].
Other work has explored the design of tasks provided in
these studies. To explore the use of task deception, Naiak-
shina et al. had 40 students complete a password storage task,
finding that priming participants for security had a statisti-
cally significant effect [33]. In a replication, Danilova et al.
found that deception may not be necessary for ecological va-
lidity [14]. As an alternate approach to traditional in-person
lab studies, Huaman et al. built a virtual study environment
to allow researchers to conduct lab studies remotely, while
maintaining ecological validity [24]. Most similar to our work,
Danilova et al. evaluated the use of code review as a method
for secure development studies, finding that code review could
be a viable method for future developer studies, but recom-
mending that more research be done into this alternative [16].

3 Method

To understand how Read and Fix compare to Write, we con-
ducted a remote experimental study with Python programmers
in which they completed two secure development tasks.

3.1 Study design

To ensure the validity of our study, we decided to partially
replicate a prior study. This allowed us to compare the re-
sults of our Write with the original study’s results, while also
allowing us to compare the results of our Write, Read, and
Fix conditions to each other. We chose to partially replicate
a 2016 study from Acar et al. exploring the usability of var-
ious Python cryptography APIs [2] because it offered self-
contained, short code writing tasks with results that lent them-
selves well to being compared across different conditions.

The original study [2] used five libraries and two types of
encryption (symmetric and asymmetric encryption), for a total
of 10 conditions. Comparing three different methods would
triple this to 30 conditions, requiring a sample size that would
not be feasible when recruiting and compensating developers.
(The original study did not compensate participants.) As such,
we opted to only replicate a subset of the original conditions
(two libraries, one type of encryption), crossed with our three
methods, for a total of six conditions.

We used the symmetric encryption tasks from the original
study, as they served as the baseline for all of the regressions
performed in the original paper, and participants in the sym-
metric condition produced more functional solutions. Partici-
pants were assigned to work in either PyCrypto or Cryptog-
raphy.io. We selected PyCrypto as it was the baseline library

for all the models in the original paper. We selected Cryptog-
raphy.io as it proved to be significantly better in regards to
security in the original paper and was designed with usability
in mind. To facilitate replication, we used the versions of each
library used in the original study, because many insecure de-
faults and security issues identified in the original study have
been addressed in modern versions of the libraries. Finally,
participants were assigned to one of three experimental con-
ditions: writing code from scratch (Write); reading existing
code, determining its correctness, and describing anything
they wanted to change (Read); or reading existing code, deter-
mining its correctness, and fixing any vulnerabilities or bugs
in the code (Fix).

Task selection. Participants were randomly assigned to one of
the six conditions and tasked with completing an encrypt/de-
crypt task and a key generation and storage task. The order
they were presented in was randomized.

For the Write condition, participants were given stub code
and asked to write code that completed the described task.
For the encrypt/decrypt task, this meant writing code that
encrypted or decrypted plaintext or ciphertext, respectively,
using a provided key. For the key generation and storage
task, participants were tasked with creating an encryption key
(file key) using a provided password, using the file key to
encrypt and store another encryption key (task key) to a file
in a provided directory name, and recovering the task key
from the same file. They were provided with tests for each
function and a set of cumulative tests at the very end. The tests
covered the basic functionality of each task and ensured that
the code ran without failure and returned the correct value.
The key generation and storage function stub, encrypt/decrypt
function stub, and provided tests for both tasks can be found
in the Supplementary Materials.'

For the Read condition, participants were given already-
completed code and asked to read it, determine its correctness,
and add comments to identify what they would change and
how. For the Fix condition, participants were given already-
completed code and asked to read it, determine its correctness,
and fix it if necessary. In both the Read and Fix conditions, the
code provided contained four unique functionality bugs and
one unique security vulnerability for the encrypt/decrypt task
and two unique functionality bugs and four unique security
vulnerabilities for the key generation and storage task. The
functionality bugs ranged in type from those that would cause
the code to crash when run to those that would not cause
the provided tests to fail. The security vulnerabilities were
based on vulnerabilities identified in the original paper [2],
to best allow for comparing results between studies. A full
list of the functionality bugs and security vulnerabilities in
the provided code can be found in Table 1. Participants in the

'Supplementary materials, as well as a version of the paper with ap-
pendices included, can be found at https://osf.i0/2nb3g/?view_only=
8£83b46a6084440783d88cl2e225a46¢.

https://osf.io/2nb3g/?view_only=8f83b46a6084440783d88c12e225a46c
https://osf.io/2nb3g/?view_only=8f83b46a6084440783d88c12e225a46c

Task Type Vuln/bug Description Tests fail
Encrypt/decrypt Security Fixed IV IV was set to static value No
Functionality ~ Return plaintext data Return plaintext instead of ciphertext Yes
Functionality ~ Encrypt key instead of plaintext Send key to encryption function instead of plaintext Yes
Functionality ~ Use plaintext as encryption key Use plaintext as key to create cipher object No
Functionality ~ Return ciphertext data Return ciphertext instead of plaintext Yes
Key generation Security Fixed salt Salt was set to static value No
and storage Security Weak KDF PBKDF]1 used No
Security Weak hash algorithm Shal used No
Security Bad mode selection Insecure mode used to encrypt key No
Functionality =~ Wrong name to open Send wrong variable to open command when writing key to file Yes

Functionality Incorrect length for password check

Use wrong value to check length of password before using in keygen ~ No

Table 1: Vulnerabilities and bugs that were included in read and fix code snippets

Read and Fix conditions were provided with the same tests as
participants in the write condition for reference (Read) or to
test their code (Fix). All code and tests can be can be found
in the Supplementary Materials.

Study environment. Our participants completed the study
remotely through NERDS [26], a study environment based
on the Developer Observatory [47]. NERDS is a customized
Jupyter notebook environment that allows participants to com-
plete coding tasks remotely, allowing for easier recruitment.

Once participants consented, they were taken to the in-
structions for the study. From there, they were able to begin
participating. Participants in the Write and Fix conditions
were able to run their code as often as they liked. Participants
in the Read condition were not provided with a run button
for their code, but they were, initially, still able to use hot
keys to run code in Jupyter notebooks. These participants’
solutions were removed from the study, and the interface was
updated to remove this “feature.” Participants were able to
move forwards or backwards through the tasks at any point.
Once participants completed all the tasks, they clicked a fin-
ish button that took them to the final survey. An example of
our study infrastructure can be found in the Supplementary
Materials.

Exit survey. Once participants indicated that they were fin-
ished with the tasks, they were directed to the final survey. We
first asked participants about the perceived security and cor-
rectness of their solutions, how frustrating, fun, tedious, and
challenging they found the tasks, and what was easy and hard
about the tasks. The next section contained the Secure Soft-
ware Development Self-efficacy Scale, which measures a per-
son’s perceived ability to complete various security tasks [S1].
The survey concluded by asking participants about their se-
curity experience, general development experience, Python
development experience, and demographics. Appendix A.1
contains the full survey.

3.2 Data analysis

We analyzed the data we collected using a mix of qualitative
and quantitative analysis, which we describe below.

Qualitative analysis. To determine what vulnerabilities and
bugs were introduced by participants in Wrife and not identi-
fied or fixed by participants in Read or Fix, we manually
reviewed the submissions following processes from prior
work [19,52]. For the Write condition, two authors reviewed
both tasks to identify any bugs or vulnerabilities present, using
the vulnerabilities identified in the original Acar et al. study
as a reference point. Each bug or vulnerability was labeled
for type (functionality or security) and the specific vulnerabil-
ity. In addition, we categorized the vulnerabilities into “issue”
classes based on the classifications used in prior work [52].

For Read and Fix, the two authors reviewed submissions
using a list of the bugs and vulnerabilities they knew to be
present. For Fix, vulnerabilities or bugs included in the study
setup were labeled for both whether participants were able to
correctly identify and fix it. For the Read condition, vulnera-
bilities or bugs included in the study setup were labeled for
whether participants were able to correctly identify the exis-
tence of the vulnerability/bug and whether the changes they
proposed would fix the vulnerability/bug, how the participant
said they would change the code to address the vulnerabili-
ty/bug, and why. For both the Read and Fix conditions, we
also labeled any additional issues identified by participants
that were not actual bugs or vulnerabilities (false positives)
and whether the unneeded fix introduced any new problems.

IRR was calculated for all variables using Krippendorff’s
o statistic, a conservative measure that considers coders’
agreement as an improvement over randomly guessing. We
met the recommended threshold for Krippendorff’s o of
0.8 [22]. Prior to agreement, all vulnerabilities and bugs were
confirmed by both coders, and consensus for all codes was
reached through discussion. The final codebook and associ-
ated IRR values are in the Supplementary Materials.

Statistical comparisons. To compare our results among con-
ditions and to the results from Acar et al., we performed
logistic regressions to explore the impact of the library used
on security and functionality (binary outcomes). We added a
random intercept to account for multiple tasks from the same
participant and used PyCrypto as the baseline, mirroring the
regressions in Acar et al. [2]. To understand the impact of
the condition on participants, we applied a linear regression
for numeric outcomes (time spent), a poisson regression for
count outcomes (number of vulnerabilities and bugs), and
an ordinal logistic regression for Likert-scale outcomes (re-
ported frustration/fun). For all regressions, the baseline was
the Write condition to allow for better comparison of our new
conditions to the more established experimental method.

3.3 Recruitment

We recruited from Upwork [1], an online freelancing plat-
form, and computer science student mailing lists at multiple
universities from May 2022 to July 2023, following best prac-
tices [25,48]. We opted for multiple recruitment approaches
to maximize the number of participants from a traditionally
challenging population. Given that students and freelancers
offer comparable conclusions [25,30,31,48] and the origi-
nal Github recruitment approach is no longer available, this
mixed population proved effective.

Upwork allows researchers to filter participants based on
their skillset. We filtered participants for experience with
Python and age (18 or older). For the full study, participants
were invited if, from their profile, they had completed at least
one small project in Python. For recruitment from CS student
mailing lists, we created a short screening survey to ensure
that participants in the main study would have programming
and Python experience. We started with a few questions to
understand their general programming experience and occu-
pation and concluded by using the questionnaire created by
Danilova et al. [15] to determine if a participant actually had
programming experience. A full copy of the screening sur-
vey can be found in Appendix A.2. We exclusively invited
participants who had Python experience and were able to
correctly answer all of the questions from the Danilova et al.
questionnaire. Only 23/188 pre-screened participants failed
the Danilova measure.

Participants were not compensated for the screening survey,
but all main study participants were compensated $35 for
completing the study with a possibility for a $5 bonus if
participants were able to identify a majority (75%) of the
functionality bugs present in the code. This bonus was meant
to encourage people to give their best effort when participating
in the study and focus on finding all issues within the code,
rather than just the obvious issues. We framed the bonus as
a reward for meeting a high correctness threshold (without
specifying a number of bugs and only counting functionality
bugs). Many participants (68% total, 58% of Fix, 81% of Read,

and 94% of Write) received this bonus. While this may have
impacted participant interaction, we deemed this important
to promoting ecological validity. We discuss this further in
Section 5. We discarded any responses where participants
skipped all tasks, but kept responses that did not receive the
bonus but where some attempt was made, as this gives us
valuable insights into participant behavior.

3.4 Ethics and consent

Both surveys (pre-screen and final) and the full study were
approved by University of Maryland’s and Colorado School
of Mines’ Institutional Review Board. We obtained informed
consent before the pre-screen survey and again before the full
study. Participants were informed that they could skip any
task or question and drop out of the study at any time.

3.5 Limitations

A key limitation of our work is the age of the study that we are
replicating. The cryptographic libraries and their documen-
tation have changed drastically since the original study. This
means that any search of online materials for assistance would
likely result in information that does not match the version of
the library used in our study. We provided participants with
a version of the documentation that matched the versions of
libraries they were using, and we encouraged them to use the
documentation as much as possible. Since we are not actually
concerned with evaluating the current usability or security of
the libraries, but rather with understanding the effect of the
method used to study them, this limitation does not reduce
the validity of our results.

The original study aimed to understand the usability of
cryptography APIs for professional developers. We aim to
semi-replicate this study. However, about half of our par-
ticipants for this study were students, differing from the
original study which used GitHub developers (a practice
that is no longer allowed). While students often have less
experience than professionals, several recent studies con-
clude they can be adequate substitutes in secure software
development studies [25, 30, 31, 48], as many skilled pro-
fessionals have limited experience with security specifi-
cally [3,6,11,21,23,28,42,46,52].

Our goal in this study was to understand the feasibility of
using reading and/or fixing code as experimental substitutes
for writing code in secure software development studies. This
study serves as a single data point in this exploration. We
explore whether reading and/or fixing code works to compare
the usability of cryptography APIs. Additionally, the tasks
in this study were deliberately small and self-contained to al-
low for easy comparison among the experimental conditions.
Thus, our results may not generalize to all kinds of secure
software development studies, such as those exploring other
secure development issues or tasking participants with build-

Upwork CS mailing list

Total participants n=76 n=36
Programming experience 7.4 years 5.7 years
Python experience 4.5 years 3 years
Professional programming experience 4.2 years 2.4 years
Professional Python experience 2.5 years 0.8 years
Security experience 1.4 years 0.8 years
Above-average security knowledge 68% 72%
SSD-SES total 46.3 40.8
SSD-SES Vulnerability 26.5 23.6
SSD-SES Communication 19.7 17.2

Table 2: Participant demographics

ing larger projects. However, we believe this study is a good
first step toward exploring this phenomenon.

A final possible limitation of this work is the reliance on
some self-report data to measure negative experiences of par-
ticipants, such as reported frustration or fun. While self-report
data can be biased or inaccurate, this is the best proxy we have
for measuring frustration levels. We attempt to mitigate some
of this self-report bias by also collecting other measures of
negative effects, such as time spent or dropout rates, and con-
sider these together as a measure for the negative experiences
of our participants.

4 Results

In this section, we discuss our participants, our Write condi-
tion results as compared to the results from Acar et al. [2], and
our Read and Fix compared to our Write condition results.

4.1 Participants

In total, 141 participants started our study, with 41 in the
Write condition, 54 in the Read condition, and 46 assigned
to the Fix condition. In total, 127 participants completed our
study with 35 in Write, 48 in Read, and 44 in Fix. However,
we removed 15 participants for a variety of reasons such
as running or editing code in the Read condition prior to
removing the use of hot keys (N = 9), skipping every task in
the study (N = 5), and not understanding what to do (N = 1).
This left us with 112 participants who completed the study;
35 in the Write condition, 37 in the Read condition, and 40
in the Fix condition. Details of participants assigned to each
experimental condition and library can be found in Table 3.

Demographics. In general, our participants trended heavily
toward male (80%), young (with ages ranging from 18 to
43 and 91% of participants being younger than 40), and edu-
cated (65% had at least a bachelor’s degree). Our participants
came from a variety of ethnic backgrounds, with a plurality
identifying as Asian (48%).

On average, our participants had 6.8 years of programming
experience and 4 years of Python experience. About 61% of
our participants were employed in a professional role that
required programming, with the most common job roles be-
ing developer and engineer. Of that 61%, 59% used Python
in their job. Our participants had 3.8 years of professional
programming experience and 2.1 years of professional Python
experience. Finally, our participants had fairly little security
experience, with an average of 1.2 years of security experi-
ence. However, our participants were self-confident in their
security abilities, with 72% rating their security knowledge
as at least average. While the experience of our participants
may seem unusually high for a population including students,
among education levels reported by final CS mailing list par-
ticipants, 20 were consistent with being in college and 13 with
being alumni or grad students (N = 36). At the institutions
we recruited from, many undergrads enroll with significant
high-school programming experience, so the high years of
experience for our participants are not all that surprising. De-

mographics for each recruitment venue can be found in Table
5

4.2 Replicating results from Acar et al.

First, we compare the Write condition to the functionality and
security results from Acar et al. [2] (see Table 3).

Functionality. We considered participants’ solutions to be
functional if they ran, passed the provided tests, and com-
pleted the assigned task. If a participant skipped a task, the
result was considered not functional. In Acar et al., partici-
pants were able to generate slightly more functional solutions
using Cryptography.io than with PyCrypto, though this result
was not statistically significant. In our study, slightly more
PyCrypto participants than Cryptography.io participants pro-
duced functional solutions; this difference was likewise not
statistically significant (Table 4).

Security.

For solutions deemed functional, we examined their se-
curity. In Acar et al., participants were able to generate sig-
nificantly more secure solutions using Cryptography.io than
PyCrypto. We similarly see significantly more secure solu-
tions from participants using Cryptography.io than PyCrypto
in our study (Table 3). Participants using Cryptography.io
were 4.7 x more likely to generate a secure solution (Table 4).

Comparing the security between the encrypt/decrypt and
key generation and storage tasks, participants in the origi-
nal study were most likely to produce a secure solution for
the encrypt/decrypt task. We see a similar trend in our study
(Table 3), although not as pronounced, with participants pro-
ducing more secure solutions for the encrypt/decrypt task than
the key generation and storage task (17 vs 10 solutions).

The distribution and types of vulnerabilities we found also
followed the original study closely (see Table 5). In the en-

Write
P! C? T P C

Read

Fix Acar et al. [2]
T | P C T | P C T

Started 21 20 41 26 28 54 22 24 46 136 136 272
Completed 18 17 35 24 24 48 21 23 44 48 48 96
Valid 18 17 35 19 18 37 21 19 40 41 39 80
Functionality 83% 59% - 47% 31% - 60% 84% - 85% 90% -
Key gen/storage 16 9 25 6 6 12 16 17 33 80% 80% -
Encrypt/decrypt 14 11 25 12 5 17 9 15 24 90% 98% -
Security 43% 70% - 50% 36% - 32% 31% - 15% 70% -
Key gen/storage 6 4 10 3 2 5 3 4 7 5% 30% -
Encrypt/decrypt 7 10 17 6 2 8 5 6 11 20% 100% -
Time (mins) - - 382 - - 302 - - 225 - - -
' PyCrypto *Crypto.io >Total

Table 3: Number of participants, across various conditions of interest. Percentages represent the share of functional/secure
solutions among all/functional solutions. We report these percentages for consistency with the original paper.

Write Read Fix
Regression Factor O.R. C.L)/ ‘ O.R. C.IL)/ ‘ O.R. C.L)/
Functionality ~ Cryptography.io 0.1 [0.0, 1.2] 0.082 ‘ 0.5 [0.1, 1.7] 0.261 ‘ 4.2 [1.3,24.8] 0.034*
Security Cryptography.io 4.7 [1.4,19.4] 0.017* ‘ 3.0 [0.2,559] 0.954 ‘ 0.4 [0.0, 4.3] 0.430

Table 4: Final logistic regression for effect of library on functionality and security in each condition.

crypt/decrypt task, they matched exactly: the most common
vulnerability was using a static initialization vector, followed
closely by using a weak encryption mode and using a weak
encryption algorithm. There were only slight differences be-
tween the studies in the key generation and storage tasks: in
ours, the most common vulnerability was storing the key un-
encrypted, followed closely by failing to use a key derivation
function (KDF), using a custom key derivation function, and
using a static salt. In the original, the top three included using
an insecure encryption mode (instead of the custom KDF).

4.3 Comparing functionality among conditions

Next, we compare the overall functionality results and the
specific functionality bugs introduced, identified, and fixed,
among our three conditions. Throughout this section, we use
B,, to represent the number of bugs from the Write condition
and, analogously, B, for Read, and B for Fix.

Similar to Write, we considered a solution in the Fix con-
dition to be functional if it ran, passed all the tests, and com-
pleted the task. For the the Read condition, we considered
the code to be functional if the participant identified and cor-
rectly addressed all the functionality bugs we introduced, as
described in Table 1. Specific counts for functional solutions
per condition and task can be found in Table 3.

Overall, participants in Write and Fix were able to produce
more functional solutions than those in Read for both libraries.
This is likely because participants in Read were unable to run
and test their code, which made identifying bugs difficult.

Comparing the two libraries to each other, in the Read

condition, participants using PyCrypto were able to produce
more functional solutions than those using Cryptography.io
(47% vs 31%). This mirrors the result for the Write condition,
discussed in Section 4.2 above. Conversely, participants in
the Fix condition were more likely to produce a functional
solution using Cryptography.io than PyCrypto (84% to 60%).
However, none of these differences in any condition were
statistically significant (Table 4).

Looking at the individual tasks, Read participants produced
more functional solutions for the encrypt/decrypt task than the
key generation and storage task. This again mirrors the result
for Write as well as the original study. Conversely, in the Fix
condition, participants produced more functional solutions for
the key generation and storage task. We hypothesize that this
relates to the specific functionality issues we inserted in Fix:
participants in this condition appeared to prioritize passing
the provided tests, which did not flag the functionality bug
we inserted into the encrypt/decrypt task.

Examining bugs in Write, Read, and Fix. In total, partici-
pants introduced 34 bugs in the Write condition, left 81/222
bugs unidentified in the Read condition, and left 70/240 bugs
unidentified in the Fix condition. In the Write and Read con-
dition, participants introduced or left more bugs when using
Cryptography.io (B,, = 25, B, = 49) than when using Py-
Crypto (B,, =9, B, = 32). In the Fix condition, participants
using PyCrypto (B¢ = 38) introduced substantially more bugs
than those who used Cryptography.io (B = 19).

Participants focus on ‘test-centric’ bugs in Write and Fix.

Write Read Fix Acar et al. [2]
Function Issue Vuln Pl C? T=59/ P C T=110| P C T=176| P C T
Encrypt/decrypt Static value StaticIV. | 5 0 5 |13 6 19 |14 16 30 |29 0 29
Total | 5 0 5 |13 6 19 |14 16 3 |29 0 29
Weak choice Insecure alg 3 1 4 - - - - - - 17 0 17
Insecure mode 4 4 - - - - - - 23 0 23
Total | 7 1 8 | - - - - - - 40 0 40
Total | 121 13 |13 6 19 |14 16 3 |6 0 69
Key gen/storage No encryption Key plain ‘ 3 7 10 ‘ - - - ‘ - - - ‘ 4 7 11
Total | 3 7 0 |- - - - - - |4 7 1
Static value Static IV 2 0 2 - - - - - - 3 0 3
Static salt 2 3 5 11 20 19 17 36 1 10 11
Static key 2 2 4 - - - - - - - -
Total | 6 5 1Im j1 9 20 |19 17 36 | 4 10 14
Weak choice No KDF 6 3 9 - - - - - - 15 1 16
Custom KDF 5 0 5 - - - - - 0 0 0
Weak KDF - - - [11 20 - 20 1 0 1
Weak hash - - - - 9 9 - 17 17 0 0 0
KDF iter 30 3 14 11 25 16 20 36 2 0 2
Insecure alg 3 0 3 - - - - - - 11 0 11
Insecure mode 5 0 5 15 11 26 19 18 37 14 0 14
Total |22 3 25 |40 31 71] 55 55 1o |43 1 44
Total | 31 21 46 | 53 37 91 |74 N2 146 | 51 18 69
'PyCrypto 2Crypto.io >Total

Table 5: Number of vulnerabilities for each issue and the number of projects each vulnerability was introduced in.

For most functionality bugs in the Write condition, partici-
pants’ code did run and pass the provided tests; however, it
did not complete the required task. For example, the most
common functionality issue in Write was caused by failing
to store the encryption information correctly (B,, = 6), such
as failing to store the key in the provided directory, as per the
instructions (B,, = 4), or not storing the key in a file (B,, = 2).

Similarly, most of the bugs unidentified in the Fix condition
were caused by failing to complete the task rather than the
code failing to run or pass the tests (’test-centric’ bugs). The
most common functionality issue left unidentified in the Fix
condition was caused by inconsistent checking for password
length in the key derivation function (B = 30). The second
most common was failing to identify that unencrypted data
was being returned from the encrypt function and encrypted
data was being returned from the decrypt function (B = 13).
This aligns with prior work showing that developers often
assume that if their code runs and passes provided tests, then
it is correct and secure [7, 19].

Participants identify a greater variety of bugs in Read.

Conversely, in the Read condition, bugs that caused the code
to not run or not pass the provided tests went unidentified
as often as those that caused the code to fail to complete the
task. The least identified in Read were cases where the wrong
variable name was passed to or used in a function, causing
the code to crash if run (B, = 44). For example, about half of

participants failed to identify a bug where a Python keyword
was passed to the open function in Python (B, = 17), causing
a crash. Participants were equally unable to identify the incon-
sistent check for the password length (B, = 16) and returning
(un)encrypted data in the encrypt and decrypt functions (B, =
20). This suggests that Read participants, unable to run code,
review all the code equally closely, resulting in identifying
fewer overall but more diverse functionality issues.

4.4 Comparing security among conditions

Next, we explore how often participants who produced a
functional solution were also able to produce a secure solution.
We compare across all three conditions, and then discuss in
detail the vulnerabilities introduced, identified, and fixed in
each. Throughout this section, we use V,,, V., and V; to
represent the number of vulnerabilities in the Write condition,
the Read condition, and the Fix condition, respectively. For
vulnerabilities that were unique to the Write condition, we do
not include counts for V, and V.

Overall, participants in the Write condition produced more
secure solutions than those in Read and Fix. This is perhaps
unsurprising, as Write participants started with a blank slate,
rather than starting with vulnerabilities already included.

In the Read and Fix conditions, we find little to no differ-
ence when comparing the two libraries. Read and Fix partici-
pants produced slightly more secure solutions with PyCrypto

than Cryptography.io (50% to 36% and 32% to 31% respec-
tively), but these comparisons were not statistically significant
(Table 4). Importantly, this differs from the result in the Write
condition (Section 4.2), which (like the original paper) identi-
fied Cryptography.io as meaningfully better for security.

In all three conditions, participants were able to produce
more secure solutions for the encrypt/decrypt task than the
key generation and storage task, mirroring the original study.

Examining vulnerabilities in Write, Read, and Fix. In to-
tal, participants introduced 59 vulnerabilities in the Write
condition, left 110 vulnerabilities unidentified in the Read
condition, and left 176 vulnerabilities unidentified in the Fix
condition. The large disparity in vulnerabilities between the
conditions was likely due to the fact that participants in Read
and Fix started with vulnerabilities in their codebase due to
the study setup, while participants in the the Write condition
started with a blank slate.

Participants assigned to use PyCrypto (V,, =43, V, = 66,
V= 88) introduced or left unidentified more vulnerabilities
than those assigned to use Cryptography.io (V,, =22, V, =
43, V¢ = 88) in Write and Read conditions. This aligns with
the original study and is likely due to the relative simplicity
of the Cryptography.io library as well as the several secure
examples within its documentation. Table 5 shows counts
for vulnerability types across conditions and libraries; for
explanations of vulnerabilities we inserted into the read and
fix conditions, refer back to Table 1.

Participants misunderstood cryptography implementa-
tions in all conditions, but documentation weaknesses are
more visible in Write. In every condition, the most common
type of vulnerability introduced or left unidentified involved
participants attempting to implement cryptography protocols
but making a weak cryptography choice (V,, = 33/59, V, =
71/110, V¢ = 110/176). The second most common issue in
all three conditions was using a fixed or static value where
randomness is needed (V,, = 16, V. =39, V = 66).

In Write, both of these vulnerability types occurred over-
whelmingly among participants using the PyCrypto library
(Vy, = 34 and 11 respectively) rather than Cryptography.io
(V,, =4 and 5 respectively), mirroring the original study. As
Acar et al. note, this was likely caused by the structure of the
then-current PyCrypto documentation, which made identify-
ing and using the most secure options difficult.

Interestingly, we don’t see the same pattern in the other
two conditions, where vulnerabilities caused by a weak cryp-
tography choice appear nearly equally in both libraries (Cryp-
tography.io: V, = 31, V= 55; PyCrypto: (V, =40, V; = 55).
Similarly, static value problems were fairly evenly distributed
between the libraries in Readand Fix(Cryptography.io: V, =
15, V¢ = 33; PyCrypto (V, =24, V¢ = 33). We hypothesize
that this occurs because identifying vulnerabilities is a diffi-
cult task, regardless of the library used. This suggests that,
as currently constructed, study designs using Read and Fix

would not have identified a key problem in PyCrypto that
was clearly evident in the original study. We hypothesize that
better documentation and simpler APIs (as found in Cryptog-
raphy.io at the time) have a larger effect when writing code,
but are less salient when trying to identify pre-existing bugs,
two very different processes.

Focus on testing in Fix causes vulnerabilities to be missed.
Participants correctly identified 75 out of 185 vulnerabilities
in the Read condition but only 24 out of 200 vulnerabilities
in the Fix condition. Our final Poisson regression model esti-
mates that Read participants identified 1.65 x more vulnerabil-
ities than Fix participants (p < 0.001). As with functionality,
we attribute this to Fix participants’ extreme prioritization of
passing the provided tests: every single Fix participant started
the study by running the code first, and 31 of 40 moved on
immediately as soon as the code ran successfully. As noted
above, this aligns with prior work regarding developers’ as-
sumptions that runnable code is correct [8, 19].
Interestingly, participants identified 8 items in the Read
condition but only 1 item in the Fix condition that were non-
vulnerabilities. Some of these were valid security-relevant
issues outside the scope of the assigned tasks (e.g., includ-
ing integrity checks for the encrypted data). Others reflected
conceptual misunderstandings (e.g., two Read participants
flagged that encryption was missing an initialization vector,
but failed to notice that the code used ECB mode, which does
not require an initialization vector but is highly insecure). This
result also suggests that Read participants paid closer atten-
tion to details (even when getting some of them wrong), most
likely because they could not run the code to get feedback.

Once vulnerabilities are found, Read and Fix participants
face similar challenges remediating them. Not only did
Read participants identify more vulnerabilities than Fix par-
ticipants, they were also better at successfully remediating
vulnerabilities (V, = 61/75 vs. Vy = 12/24 , respectively).
However, they tended to struggle with remediating similar
issues. In one notable example, 10 participants in the Read
condition and 3 participants in the Fix condition noticed that
the provided code used insufficient iterations in the key deriva-
tion function. The recommended value (at the time of the
original study) is 10,000, but several participants (V, =4, V¢
= 1) increased the value to only 1000, as recommended by
the PyCrypto documentation. Only three of the 22 Write par-
ticipants who used a key derivation function failed to use at
least 10,000 iterations. Here, the Read and Fix study designs
are able to illuminate a problem in the library documentation.

4.5 Effects on participants

In this section, we discuss the effect of the different experi-
mental conditions on participants and response quality, includ-
ing dropout rate, time to complete, and reported frustration
and fun. Throughout this section we use N,, N,,, and N to

Factor Coeff C.L y/]

Read <73 [-22.2,7.6] 0.341
Fix -15.7 [-304,-1.1] 0.037*

Table 6: Final linear regression for completion time.

represent the number of participants in Read, Write, and the
Fix condition, respectively.

Dropouts. Overall, only 11 of 141 participants dropped out,
(Ny =6/41, N, = 3/54, Ny = 2/46), which is drastically differ-
ent than the experience of the researchers in Acar et al. [2],
who had a dropout rate of nearly 84%. This is likely due
primarily to the fact that we compensated participants, but
only if they completed the study, thus incentivizing them to
finish. (Another contributing factor is likely that we did not
include the KeyCzar and M2Crypto libraries or asymmetric
encryption tasks, all of which were associated with especially
high dropout rates in the original study.) Details of the number
of valid and completed submissions can be seen in Table 3.

Completion time. We use the time spent on each condition
as a first, crude measure of stress on participants, as partic-
ipants consider time as an important factor when enrolling
in secure software development studies [45]. To calculate
this, we measured the time spent actively working on the
study, i.e. excluding any breaks, by measuring the amount of
time participants had our study actively open on their screen.
The mean completion time for the study as a whole was
30.2 minutes (N = 19.6 minutes, 6 = 32.6 minutes). Par-
ticipants spent 38.2 minutes on average in the Write con-
dition (M = 19.9 minutes, ¢ = 43.7 minutes), 30.9 minutes
on average in the Read condition (n = 22.3 minutes, ¢ =
25.7 minutes), and 22.5 minutes on average in the Fix con-
dition (1 = 16.6 minutes, 6 = 25.1 minutes). Using a linear
regression, we found that participants in the Fix condition
spent significantly less time than those in the Wrife condition
(p =0.037, CI = [-30.37,—1.11]). Details of this regression
can be found in Table 6. We note that while not substantially
different across conditions, we do see the fewest dropouts in
Fix, the condition with the shortest completion time.

Fix reported as least frustrating, Write as most frustrating.
To measure study stress on participants, we asked them to
self-report their frustration with the required tasks. We used
an ordinal logistic regression for each task (encrypt/decrypt
and key generation and storage) to understand the impact of
condition/library on frustration as described in Section 3.2.
For the encrypt/decrypt task, 10 participants (29%) in the
Write condition, 10 participants (27%) in the Read condition,
and 6 participants (15%) in the Fix condition reported being
frustrated (agree and strongly agree). Our model estimates that
participants in the Fix condition were 2.71x more likely to
report lower frustration than those in the Write condition (p =

v B ¥
Q
<
e
o a
@
(o]
- N
«Q
@
)
.)
- | :
50 25 0 25 50

Neither agree

M Strongly disagree I Disagree nor disagree

Agree M Strongly agree

Figure 1: Reported frustration for both tasks in each condition

Write I - gl
Q

<L

©

(0]

o

we [M :
«Q

S

5]

. O]

50 25 0 25 50

Neither agree

M Strongly disagree [Disagree nor disagree

Agree M Strongly agree

Figure 2: Reported fun for both tasks in each condition

0.02). For the key generation and storage task, 18 participants
(51%) in the Write condition, 6 (17%) in the Read condition,
and 4 participants (10%) in the Fix condition reported being
frustrated (agree and strongly agree). Our model estimates
that participants in the Read condition and the Fix condition
were 3.7 and 6.0x more likely to report lower frustration,
respectively, than those in the Write condition (p = 0.004,
p < 0.001 respectively). We report the model and p-values
in Table 7. We found no significant effect of the library on
reported frustration for either task. The reported frustration in
each condition for both tasks can be seen in Figure 1.

Read and Fix reported as more fun than Write for key
generation and storage. As another measure of study stress
on participants, we asked participants to self-report whether
they found the tasks fun. For the encrypt/decrypt task, 23
participants (66%) in Write, 28 participants (76%) in Read,
and 34 participants (85%) in Fix reported having fun with the
tasks (agree and strongly agree). To understand the effect of
the condition and library on fun, we used the same ordinal
logistic regression as described above. We found no signifi-
cant effect of the condition or library on reported fun. For the

Enc/dec Keygen
Regression Factor O.R. C.L)/ ‘ O.R. C.IL)/
Frustration Read 1.1 [0.5,2.6] 0.834 | 3.7 [1.5,9.1] 0.004*

Fix 2.7 [1.2,6.5] 0.023*| 6.0 [2.5,15.1] <0.001*
Crypto.io 0.8 [0.4,1.7] 0.682 ‘ 1.1 [05,2.1] 0.887
Fun Read 1.1 [04,27] 0862 | 2.6 [1.1,6.4] 0.033*
Fix 1.7 [0.7,43] 0246 | 2.7 [1.1,6.5] 0.028*

Cryptoio 1.1 [05,22] 0.889 | 1.0

[0.5,1.9] 0.909

Table 7: Ordinal logistic regression for frustration and fun.

key generation and storage task, 17 participants (49%) in the
Write condition, 27 participants (73%) in the Read condition,
and 36 participants (90%) in the Fix condition reported hav-
ing fun with the tasks (agree and strongly agree). Our model
estimates that participants in the Read and Fix conditions
were each 2.6 x and 2.7 x more likely to report agreeing with
having fun than those in the Write condition, respectively. We
saw no significance of the library on reported fun. We report
the model and p-values in Table 7. The reported fun in each
condition for both tasks can be seen in Figure 2.

These results suggest that participants overall felt more
positive about Read and Fix than Write, including actually
enjoying Read and Fix for some tasks, with a minority of
participants reporting frustration in Fix and a majority of
participants reporting having fun in Read and Fix. A more
positive participant experience has a number of potential ben-
efits, including increased effort and better retention [45].

5 Discussion and recommendations

We now discuss how the research community can potentially
apply our findings. We note that our results are exploratory in
nature and that further work is likely needed to validate these
findings, particularly in new contexts; we discuss this need
for additional study further in Section 5.2.

5.1 When to use Write, Read, or Fix

Based on our experience, we make preliminary recommenda-
tions for how to use the three different study designs in future
research, subject to further validation.

Use Write for measuring the efficacy of code writing tools.
Similar to other studies that have relied on participants writ-
ing code [2,19,30,41,42,52], our results in Write were able
to reveal important differences between the cryptographic
APIs that we tested, namely in the security of the solutions
participants produced. These differences were substantially
less visible in the Read and Fix conditions. We hypothesize
that this may be because “simplified” cryptographic APIs
are designed to prevent developers from making, rather than

identifying and fixing security mistakes. Cryptographic APIs
and documentation often contain examples supporting code-
writing, but these are non-exhaustive and usually don’t doc-
ument incorrect usage, forcing users to reference other re-
sources when reviewing code. The Write method may be
more appropriate when the researchers’ goal is to evaluate
tools aimed at writing secure code, such as APIs [2,37,50],
IDE tools [18,20,27,34,41,49], and Al-based code generation
assistants [38,39,44], or when the goal is to categorize the se-
curity results of building a system from scratch. In particular,
Write would be ideal for a study exploring the types of vulner-
abilities that developers introduce in specific programming
tasks and languages [52].

Use Read to measure developers’ knowledge. Read partic-
ipants identified fewer functionality bugs but more vulnera-
bilities than Fix participants, despite having no provided tests
and being unable to run the code. This suggests a Read study
design may be useful to understand the types of bugs and
especially vulnerabilities developers know to look for in a
given development context. This could be useful for evalu-
ating overall security awareness and knowledge, addressing
research questions about how well developers can spot prob-
lems or achieve security when they are required to pay close
attention to details, providing (in some ways) an upper bound
on secure development skills. For example, Read could be
useful for understanding whether developers know they need
to salt passwords to store them securely [32]. Rather than
having participants build an entire system from scratch, re-
searchers could provide participants with finished code that
did (not) salt passwords, and see whether participants can spot
the problem, providing a much faster approach.

Use Fix to measure quick fixes. Participants in the Fix con-
dition found more functionality bugs than security vulnera-
bilities, and overall they mostly caught ‘test-centric’ issues,
rather than deeper or less visible issues. These results echo
prior work, in which participants struggled to identify new
areas for testing when any tests were provided [7, 19]. This
suggests Fix study designs may be useful for identifying vul-
nerabilities and bugs developers are able to quickly recognize
and address using existing tests and prior knowledge. These
results may therefore serve as (in some ways) a lower bound
on programmers’ secure development abilities.

Further, the utility of Fix study designs could potentially be
extended to studies of secure-development tools (e.g., static
analysis tools or fuzzers) that automatically flag certain types
of vulnerabilities for developers’ attention or of how partici-
pants select and evaluate Al-generated code suggestions, as
these studies highlight how the evaluation and interaction
is performed rather than just the identification. We found
that once issues are identified, Read and Fix participants had
roughly similar success in addressing them, so this study de-
sign may be useful for examining how effectively developers
can understand and address vulnerabilities these tools iden-

tify.

Use Read and Fix to minimize time, frustration. Com-
pared with the the Write condition, participants who had to
Read or Fix code spent, on average, less time completing
the study and found their tasks less frustrating and more fun.
Prior research has found that industry developers—a desir-
able but hard-to-reach demographic for secure development
studies—prioritize factors such as study duration and low
effort [45]. Therefore, when appropriate for the research ques-
tions, Read and Fix methods may offer reasonable trade-offs
to researchers who are concerned about recruiting enough
target participants for studies.

5.2 How to design Write, Read, Fix studies

Since the Read and Fix methods for secure development stud-
ies are relatively novel, there are several design considerations
future researchers should take into account. In this prelimi-
nary study, we were only able to explore a few points in this
potential design space; we hope that going forward, other re-
searchers will explore different trade-offs and design choices,
to better characterize the pros and cons of different study
designs in the broader secure-development context.

Improving Write studies. We suspect that there are limits
to how enjoyable write studies can be designed to be. Our
low-dropout experience, compared to Acar et al. [2], suggests
compensation and clear study expectations help. Echoing
prior work, our results also suggest that fun and time spent
matters, so more interesting and shorter tasks may help [45].

Utilizing bonus payments. While bonus payments have not
previously been widely used, we added them after observing
some participants skipping all tasks to receive compensation.
We specifically left the framing of the bonus vague so as to not
sway participants too heavily to only address a certain number
of bugs. The addition of the bonus improved the validity of
our results, as it reduced the number of low-effort submissions.
However, it is possible that it focused participants’ attention
on functionality bugs, as they were motivated to receive the
bonus, possibly causing them to not look for security vul-
nerabilities. Researchers should consider the inclusion and
framing of a bonus carefully. While it helps promote partic-
ipant retention and quality, it may also sway participants in
the Fix condition to focus solely on passing the tests, rather
than taking a more holistic approach.

Inserting realistic vulnerabilities. In order to conduct a
study based on reading or fixing code, researchers must insert
appropriately realistic vulnerabilities (and potentially develop
predefined tests or tools that can flag them). For this early-
stage, exploratory work, we derived these vulnerabilities from
real participant examples observed in a prior code-writing
study. Of course, researchers who are using Read or Fix in-
stead of a Write study are unlikely to have this kind of prior

data available. We suggest instead identifying realistic se-
curity defects from known vulnerability listings (e.g., CVE
lists) or using examples taken from open-source software or
from programming sites like Stack Overflow. It may also be
possible to derive defects from interview or survey studies
that reveal developers’ misconceptions and mental models.
These approaches, however, may need to be validated with
further studies of experimental methods.

Enhancing ecological validity. For this early-stage study
comparing methods, we prioritized internal validity (straight-
forward comparisons between conditions) as well as repli-
cating prior work (for contextualizing our results). This led
to specific design choices, such as restricting participants
to specific libraries, avoiding external documentation, using
older versions of software and documentation, and prevent-
ing Read participants from running code. We believe these
choices made sense for this study, but they did reduce ecolog-
ical validity, as real-world code review processes obviously
lack many or all of these restrictions. Researchers considering
employing Read and Fix should revisit these trade-offs for
their own research questions and constraints; for example, in
some studies it may be useful to more closely match the flow
of real-world code review processes such as those used in
public repositories like GitHub.

One of the main reasons Fix underperformed was because
participants focused primarily on passing the pre-written tests;
since these are not an inherent feature of Fix, future work
should investigate whether removing them would increase
the overall effectiveness of this condition. As with other
exploratory changes, versions of Read and Fix that priori-
tize ecological validity should be validated with additional
methodological studies.

Exploring Read and Fix for other secure-development
domains and questions. We designed our study around a
specific secure-development research question: the relative
effectiveness of cryptographic APIs. Other security domains
may suffer from different types of vulnerabilities and bugs,
and other types of research questions may exhibit different out-
comes from different study designs. Further work is needed
to explore how Read and Fix would function in these differ-
ent contexts. Perhaps other novel methods, in addition to the
three study designs we considered, can also be developed to
address these contexts.

6 Acknowledgments

We thank the anonymous reviewers who provided helpful
comments on this paper. This project was supported by NSF
grants CNS-1801545 and CAREER-1943215.

References

(1]
(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

Upwork. https://www.upwork.com/.

Yasemin Acar, Michael Backes, Sascha Fahl, Simson
Garfinkel, Doowon Kim, Michelle L. Mazurek, and
Christian Stransky. Comparing the Usability of Cryp-
tographic APIs. In IEEE Symposium on Security and
Privacy (SP). IEEE, 2017.

Yasemin Acar, Michael Backes, Sascha Fahl, Doowon
Kim, Michelle L. Mazurek, and Christian Stransky. You
Get Where You’re Looking For: The Impact of Informa-
tion Sources on Code Security. In IEEE Symposium on
Security and Privacy (SP). IEEE, 2016.

Yasemin Acar, Sascha Fahl, and Michelle L Mazurek.
You are Not Your Developer, Either: A Research Agenda
for Usable Security and Privacy Research Beyond End
Users. In IEEE Cybersecurity Development (SecDev).
IEEE, 2016.

Yasemin Acar, Christian Stransky, Dominik Wermke,
Michelle L Mazurek, and Sascha Fahl. Security Devel-
oper Studies with GitHub Users: Exploring a Conve-
nience Sample. In Symposium on Usable Privacy and
Security (SOUPS), 2017.

Noura Alomar, Primal Wijesekera, Edward Qiu, and
Serge Egelman. “You’ve Got Your Nice List of Bugs,
Now What?” Vulnerability Discovery and Management
Processes in the Wild. In Symposium on Usable Privacy
and Security (SOUPS), 2020.

Hala Assal and Sonia Chiasson. Security in the Soft-
ware Development Lifecycle. In Symposium on Usable
Privacy and Security (SOUPS), 2018.

Wei Bai, Omer Akgul, and Michelle L Mazurek. A Qual-
itative Investigation of Insecure Code Propagation from
Online Forums. In IEEE Cybersecurity Development
(SecDev). IEEE, 2019.

Sebastian Baltes and Stephan Diehl. Worse Than Spam:
Issues in Sampling Software Developers. In ACM/IEEE
international symposium on empirical software engi-
neering and measurement, 2016.

Gunnar R Bergersen, Dag IK Sjgberg, and Tore Dyba.
Construction and validation of an instrument for measur-
ing programming skill. JEEE Transactions on Software
Engineering, 40(12), 2014.

Veroniek Binkhorst, Tobias Fiebig, Katharina Kromb-
holz, Wolter Pieters, and Katsiaryna Labunets. Security
at the End of the Tunnel: The Anatomy of VPN Mental
Models Among Experts and Non-Experts in a Corpo-
rate Context. In USENIX Security Symposium (USENIX
Security), 2022.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

Yung-Yu Chang, Pavol Zavarsky, Ron Ruhl, and Dale
Lindskog. Trend Analysis of the CVE for Software
Vulnerability Management. In IEEE Third International
Conference on Privacy, Security, Risk and Trust and
2011 IEEE Third International Conference on Social
Computing. IEEE, 2011.

Anastasia Danilova, Stefan Horstmann, Matthew Smith,
and Alena Naiakshina. Testing Time Limits in Screener
Questions for Online Surveys with Programmers. In
IEEE International Conference on Software Engineer-
ing (ICSE), 2022.

Anastasia Danilova, Alena Naiakshina, Johanna Deuter,
and Matthew Smith. Replication: On the Ecological
Validity of Online Security Developer Studies: Explor-
ing Deception in a Password-Storage Study with Free-
lancers. 2020.

Anastasia Danilova, Alena Naiakshina, Stefan
Horstmann, and Matthew Smith. Do you really code?
Designing and Evaluating Screening Questions for
Online Surveys with Programmers. In International
Conference on Software Engineering (ICSE). 1EEE,
2021.

Anastasia Danilova, Alena Naiakshina, Anna Rasgauski,
and Matthew Smith. Code Reviewing as Methodology
for Online Security Studies with Developers-A Case
Study with Freelancers on Password Storage. In Sympo-
sium on Usable Privacy and Security (SOUPS), 2021.

Janet Feigenspan, Christian Késtner, Jorg Liebig, Sven
Apel, and Stefan Hanenberg. Measuring programming
experience. In IEEE international conference on pro-
gram comprehension (ICPC). IEEE, 2012.

Matthew Finifter and David Wagner. Exploring the
Relationship Between Web Application Development
Tools and Security. 2011.

Kelsey R Fulton, Daniel Votipka, Desiree Abrokwa,
Michelle L Mazurek, Michael Hicks, and James Parker.
Understanding the How and the Why: Exploring Secure
Development Practices through a Course Competition.
In ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), 2022.

Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke,
Christian Stransky, Sebastian Moller, Yasemin Acar, and
Sascha Fahl. Developers Deserve Security Warnings,
Too: On the Effect of Integrated Security Advice on
Cryptographic API Misuse. In Symposium on Usable
Privacy and Security (SOUPS), 2018.

Matthew Green and Matthew Smith. Developers are
Not the Enemy!: The Need for Usable Security APIs.
IEEE Security & Privacy, 14(5), 2016.

https://www.upwork.com/

[22] Andrew F Hayes and Klaus Krippendorff. Answering
the Call for a Standard Reliability Measure for Coding
Data. Communication methods and measures, 1(1).

[23] Mohammadreza Hazhirpasand, Oscar Nierstrasz, Mo-
hammadhossein Shabani, and Mohammad Ghafari. Hur-
dles for Developers in Cryptography. 2021.

[24] Nicolas Huaman, Alexander Krause, Dominik Wermke,
Jan H. Klemmer, Christian Stransky, Yasemin Acar, and
Sascha Fahl. If You Can’t Get Them to the Lab: Evalu-
ating a Virtual Study Environment with Security Infor-
mation Workers. In Symposium on Usable Privacy and
Security (SOUPS), 2022.

[25] Harjot Kaur, Sabrina Amft, Daniel Votipka, Yasemin
Acar, and Sascha Fahl. Where to Recruit for Security
Development Studies: Comparing Six Software Devel-
oper Samples. 2022.

[26] Joe Lewis. Nerds. https://github.com/SP2-MC2/
Developer-Observatory, 2021.

[27] Tianshi Li, Yuvraj Agarwal, and Jason I Hong. Coconut:
An IDE Plugin for Developing Privacy-Friendly Apps.
ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 2(4), 2018.

[28] Abraham H Mhaidli, Yixin Zou, and Florian Schaub.
“We Can’t Live Without Them!” App Developers’ Adop-
tion of Ad Networks and Their Considerations of Con-
sumer Risks. In Fifteenth Symposium on Usable Privacy

and Security (SOUPS 2019), pages 225-244, 2019.
[29] Mitre. CVE. https://cve.mitre.org/, 2020.

[30] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz,
and Matthew Smith. On Conducting Security Devel-
oper Studies with CS Students: Examining a Password-
Storage Study with CS Students, Freelancers, and Com-
pany Developers. In CHI Conference on Human Factors
in Computing Systems, 2020.

[31] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz,
Emanuel Von Zezschwitz, and Matthew Smith. “If you
want, I can store the encrypted password”: A Password-
Storage Field Study with Freelance Developers. In CHI
Conference on Human Factors in Computing Systems,
2019.

[32] Alena Naiakshina, Anastasia Danilova, Christian Tiefe-
nau, Marco Herzog, Sergej Dechand, and Matthew
Smith. Why Do Developers get Password Storage
Wrong? A Qualitative Usability Study. In ACM SIGSAC
Conference on Computer and Communications Security
(CCS), 2017.

(33]

[34]

(35]

[36]

[37]

(38]

(39]

(40]

[41]

[42]

[43]

Alena Naiakshina, Anastasia Danilova, Christian Tiefe-
nau, and Matthew Smith. Deception Task Design in
Developer Password Studies: Exploring a Student Sam-
ple. In Symposium on Usable Privacy and Security
(SOUPS), 2018.

Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar,
Michael Backes, Charles Weir, and Sascha Fahl. A
Stitch in Time: Supporting Android Developers in Writ-
ing Secure Code. In ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2017.

NIST. National Vulnerability Database. https://nvd.
nist.gov/general, 2020.

Anna-Marie Ortloff, Christian Tiefenau, and Matthew
Smith. SoK: I Have the (Developer) Power! Sample Size
Estimation for Fisher’s Exact, Chi-Squared, McNemar’s,
Wilcoxon Rank-Sum, Wilcoxon Signed-Rank and t-tests
in Developer-Centered Usable Security. In Symposium
on Usable Privacy and Security (SOUPS), 2023.

Nikhil Patnaik, Joseph Hallett, and Awais Rashid. Us-
ability Smells: An Analysis of Developers’ Struggle
With Crypto Libraries. 2019.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Bren-
dan Dolan-Gavitt, and Ramesh Karri. Asleep at the
Keyboard? Assessing the Security of GitHub Copilot’s
Code Contributions. In IEEE Symposium on Security
and Privacy (SP). IEEE, 2022.

Neil Perry, Megha Srivastava, Deepak Kumar, and Dan
Boneh. Do Users Write More Insecure Code with Al
Assistants? In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2023.

Olgierd Pieczul, Simon Foley, and Mary Ellen Zurko.
Developer-centered security and the symmetry of igno-
rance. In New Security Paradigms Workshop, 2017.

Stephan Ploger, Mischa Meier, and Matthew Smith. A
Qualitative Usability Evaluation of the Clang Static An-
alyzer and libFuzzer with CS Students and CTF Players.
In Symposium on Usable Privacy and Security (SOUPS),
2021.

Andrew Ruef, Michael Hicks, James Parker, Dave Levin,
Michelle L Mazurek, and Piotr Mardziel. Build It, Break
It, Fix It: Contesting Secure Development. In ACM
SIGSAC Conference on Computer and Communications
Security (CCS), 2016.

Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo.
Are Students Representatives of Professionals in Soft-
ware Engineering Experiments? In IEEE International
Conference on Software Engineering (ICSE), 2015.

https://github.com/SP2-MC2/Developer-Observatory
https://github.com/SP2-MC2/Developer-Observatory
https://cve.mitre.org/
https://nvd.nist.gov/general
https://nvd.nist.gov/general

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh
Karri, Siddharth Garg, and Brendan Dolan-Gavitt. Lost
at C: A User Study on the Security Implications of Large
Language Model Code Assistants. In USENIX Security
Symposium (USENIX Security), 2023.

Raphael Serafini, Marco Gutfleisch, Stefan Albert
Horstmann, and Alena Naiakshina. On the Recruitment
of Company Developers for Security Studies: Results
from a Qualitative Interview Study. In Symposium on
Usable Privacy and Security (SOUPS), 2023.

Matthew Smith. Usable Security—The Source Awakens.
USENIX Association, 2016.

Christian Stransky, Yasemin Acar, Duc Cuong Nguyen,
Dominik Wermke, Doowon Kim, Elissa M. Red-
miles, Michael Backes, Simson Garfinkel, Michelle L.
Mazurek, and Sascha Fahl. Lessons Learned from Using
an Online Platform to Conduct Large-Scale, Online Con-
trolled Security Experiments with Software Developers.
In USENIX Workshop on Cyber Security Experimenta-
tion and Test (CSET). USENIX Association, 2017.

Mohammad Tahaei and Kami Vaniea. Recruiting Partic-
ipants With Programming Skills: A Comparison of Four
Crowdsourcing Platforms and a CS Student Mailing List.
In CHI Conference on Human Factors in Computing
Systems, 2022.

Mohammad Tahaei, Kami Vaniea, Konstantin Beznosov,
and Maria K Wolters. Security Notifications in Static
Analysis Tools: Developers’ Attitudes, Comprehension,
and Ability to Act on Them. In CHI Conference on
Human Factors in Computing Systems, 2021.

Christian Tiefenau, Emanuel von Zezschwitz, Maximil-
ian Hiring, Katharina Krombholz, and Matthew Smith.
A Usability Evaluation of Let’s Encrypt and Certbot: Us-
able Security Done Right. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1971-1988, 2019.

Daniel Votipka, Desiree Abrokwa, and Michelle L
Mazurek. Building and Validating a Scale for Secure
Software Development Self-Efficacy. In CHI Confer-
ence on Human Factors in Computing Systems, 2020.

Daniel Votipka, Kelsey R Fulton, James Parker, Matthew
Hou, Michelle L Mazurek, and Michael Hicks. Under-
standing security mistakes developers make: Qualitative
analysis from Build It, Break It, Fix It. In USENIX
Security Symposium (USENIX Security), 2020.

Aiko Yamashita and Leon Moonen. Surveying devel-
oper knowledge and interest in code smells through

A

online freelance marketplaces. In International Work-
shop on User Evaluations for Software Engineering Re-
searchers (USER). IEEE, 2013.

Survey instruments

A.1 Final survey

A.1.1 Encrypt/decrypt task specific questions

1.

Recall your experiences with the task where you were ex-
pected to encrypt/decrypt data (encryption/decryption
task).
I completed the encryption/decryption task correctly.
* [am not confident.
* I am slightly confident.
*] am somewhat confident.
¢ [am moderately confident.
* I am absolutely confident.

. I completed the encryption/decryption task securely.

* I am not confident.

* T am slightly confident.

* I am somewhat confident.

* [am moderately confident.

e T am absolutely confident.
The documentation was helpful in completing the en-
cryption/decryption task.

» Strongly agree

* Agree

* Neither agree nor disagree

» Disagree

» Strongly disagree
Completing the encryption/decryption task was frus-
trating.

 Strongly agree

e Agree

* Neither agree nor disagree

* Disagree

 Strongly disagree

. Completing the encryption/decryption task was fun.

 Strongly agree

* Agree

* Neither agree nor disagree

* Disagree

* Strongly disagree
Completing the encryption/decryption task was te-
dious.

» Strongly agree

* Agree

* Neither agree nor disagree

* Disagree

 Strongly disagree

. Completing the encryption/decryption task was chal-

lenging.

» Strongly agree
* Agree
* Neither agree nor disagree
* Disagree
 Strongly disagree
9. What parts of the encryption/decryption task were
easy?
* Text box
10. What parts of the encryption/decryption task were dif-
ficult?
* Text box

A.1.2 Keygen task specific questions

1. Recall your experiences with the task where you were
expected to expected to generate an encryption key and
store it securely (key generation and storage task).

2. I completed the key generation and storage task cor-
rectly.

* [am not confident.

* I am slightly confident.

* I am somewhat confident.
* [am moderately confident.
* [am absolutely confident.

3. I completed the key generation and storage task se-

curely.
* T am not confident.
* [am slightly confident.
* [am somewhat confident.
* [am moderately confident.
* T am absolutely confident.

4. The documentation was helpful in completing the key

generation and storage task.
» Strongly agree
* Agree
* Neither agree nor disagree
* Disagree
» Strongly disagree
5. Completing the key generation and storage task was
frustrating.
» Strongly agree
* Agree
* Neither agree nor disagree
* Disagree
 Strongly disagree
6. Completing the key generation and storage task was
fun.
» Strongly agree
* Agree
* Neither agree nor disagree
* Disagree
» Strongly disagree

7. Completing the key generation and storage task was

tedious.

* Strongly agree
* Agree
» Neither agree nor disagree
* Disagree
* Strongly disagree
8. Completing the key generation and storage task was
challenging.
» Strongly agree
* Agree
* Neither agree nor disagree
* Disagree
* Strongly disagree
9. What parts of the key generation and storage task were
easy?
* Text box
10. What parts of the key generation and storage task were
difficult?
* Text box

A.1.3 Study specific questions

1. Are you aware of a specific library or other resource you
would have preferred to use to generate functional and
secure code? If yes, please list them.

¢ Yes [Text box]

* No

2. Have you used or seen this assigned library before?

e I have used the assigned library before. (e.g.
worked on a project with assigned library)

* T have seen code from the assigned library but not
used it myself. (e.g. worked on a project with the
library but someone else wrote the code)

¢ I have neither used nor seen the assigned library
before.

e I don’t know

3. Have you written or seen code for tasks similar to the
assigned tasks before?

* I have written similar code. (e.g. worked on a
project that included a similar task)

* I have seen similar code but have not written it
myself. (e.g. worked on a project that included a
similar task but someone else wrote the code)

* T have never written nor seen code for similar tasks.

e I don’t know

A.1.4 System Usability Scale

1. We asked you to use an assigned library. To what extent
do you agree with each of the following statements in
reference to your assigned library and it’s documenta-
tion: (Strongly agree, Agree, Neither agree nor disagree,
Disagree, Strongly disagree)

e | think that I would like to use this library fre-
quently.

I found this library unnecessarily complex.

I thought this library was easy to use.

I think that I would need the support of a technical
person to be able to use this library.

I found the various functions in this library were
well integrated.

I found this library fun to use. Regardless of what
you felt please select strongly agree.

I thought there was too much inconsistency in this
library.

I would imagine that most people would learn to
use this library very quickly.

I found this library very cumbersome to use.

I felt very confident using this library.

I needed to learn a lot of things before I could get
going with this library.

A.1.5 Acar Usability Scale

1. We asked you to use an assigned library. To what extent
do you agree with each of the following statements in
reference to your assigned library and it’s documenta-
tion: (Strongly agree, Agree, Neither agree nor disagree,
Disagree, Strongly disagree)

I had to understand how most of the assigned li-
brary works in order to complete the tasks.

It would be easy and require only small changes to
change parameters or configuration later without
breaking my code.

After doing these tasks, I think I have a good un-
derstanding of the assigned library overall.

I only had to read a little of the documentation for
the assigned library to understand the concepts that
I needed for these tasks.

The names of classes and methods in the assigned
library corresponded well to the functions they pro-
vided.

It was straightforward and easy to implement the
given tasks using the assigned library.

When I accessed the assigned library documenta-
tion, it was easy to find useful help.

In the documentation, I found helpful explanations.
In the documentation, I found helpful code exam-
ples.

When I made a mistake, I got a meaningful error
message/exception.

Using the information from the error message/ex-
ception, it was easy to fix my mistake.

Using the information from the error message/ex-
ception, it was hard to fix. Please select strongly
disagree.

A.1.6 SSD-SES

1. During this portion of the survey, you will be shown hy-
pothetical software development tasks. Please rate your
level of confidence in completing the following software
development tasks. (I am not confident, I am slightly
confident, I am somewhat confident, I am moderately
confident, I am absolutely confident, I do not understand
the question)

* I can perform a threat risk analysis (e.g. likelihood
of vulnerability, impact of exploitation, etc.)

*] can identify potential security threats to the sys-
tem.

* I can identify common attack techniques used by
attackers.

¢ I can identify potential attack vectors in the envi-
ronment the system interacts with (e.g., hardware,
libraries, etc.).

* I can identify common vulnerabilities of a program-
ming language.

* I can design software to quarantine an attacker if a
vulnerability is exploited.

¢ I can mimic potential threats to the system.

¢ I can evaluate security controls on the system’s
interfaces/interactions with other software systems.

* I can evaluate security controls on the system’s in-
terfaces/interactions with other hardware systems.

e] can communicate security assumptions and re-
quirements to other developers on the team to en-
sure vulnerabilities are not introduced due to mis-
understandings.

* I can communicate system details with other devel-
opers to ensure a thorough security review of the
code.

* I can discuss lessons learned from internal and ex-
ternal security incidents to ensure all development
team members are aware of potential threats.

* | can effectively communicate identified security
issues and the cost/risk trade-off associated with
deciding whether or not to fix the problem to orga-
nization leadership.

| can communicate functionality needs to security
experts to get recommendations for secure solu-
tions (e.g., secure libraries, design patterns, and
platforms).

* I know the appropriate point of contact/response
team in my organization to contact if a vulnerability
in production code is identified.

* I can perform security assessments. Regardless of
your actual answer, please select I am absolutely
confident.

A.1.7 General technical background

8.

10.

. Including education, how long have you been program-

ming? (In years)

* Text box
Including education, how long have you been program-
ming in Python? (In years)

* Text box
Are you currently employed in a role that requires pro-
gramming?

* Yes

* No

* Maybe
(If yes or maybe to above) Is writing code in Python part
of your primary job?

* Yes

* No

* Maybe
(If yes or maybe to above) Not including education, how
long have you been programming professionally? (In
years)

* Text box
(If yes or maybe to above) Not including education, how
long have you been programming in Python profession-
ally? (In years)

* Text box
(If yes or maybe to above) Which of the following job
roles describe you? (Please select all that apply)

» Developer

* Administrator

* DevOps Engineer

* Academic researcher/Scientist

* Data science/Machine learning specialist

* Educator

* Engineer

* Manager/Team lead

* None

e Other [Text box]
How did you learn to code? (Please select all that apply)

* Self-taught

* Online class

* College/University

* On-the-job training

* Professional certification program

* Coding bootcamp

* I did not learn to code

¢ Other [Text box]
How do you rate your knowledge of software security?

e Very high

* Above average

* Average

* Below average

* Very low
Which of the following statements describe the secure

programming training that you have received? (Please
select all that apply)
* Ireceived secure programming training through an
event organized by my employer
e I learned secure programming concepts while
working
* I received secure programming training at school/-
college/university
* Ireceived secure programming training at a work-
shop/seminar
* Ireceived secure programming training with online
courses
e [am self-taught
* [have never received secure programming training

11. How many total years of experience do you have in

computer security? (Experience includes years at work
or studying in a security-related field)
* Text box

A.1.8 Demographics

1. Please select the gender with which you most closely

identify:
* Man
* Woman
* Non-binary
» Another gender/prefer to self-describe [Text box]
¢ Prefer not to answer

2. What is your age in years?

e Text box

3. Please specify your ethnicity. (Please select all that ap-

ply)
¢ White
* Hispanic or Latino
¢ Black or African American
¢ American Indian or Alaskan Native
e Asian
¢ Native Hawaiian or Pacific Islander
e Prefer to self-describe [Text box]
¢ Prefer not answer

4. Please select your highest completed education level.

* Some high school

* High school diploma/GED
* Some college, no degree

* Associate’s degree

* Bachelor’s degree

* Master’s degree

* Doctoral degree

* Prefer not to answer

5. (If college or above) What was your primary field of

study?
* Computer science
* IT security/Cyber security
* Other engineering disciplines

e OCaml (Extremely proficient, Moderately profi-
cient, Somewhat proficient, Not at all proficient, I
am not familiar with this programming language)

* Never declared a major
¢ Other [Text box]

6. What is your country of residence?
* Text box

A.2.2 Screener from Danilova et al. [15]

A.2 Screening survey 1. Which of the following websites do you most frequently

use as an aid when programming?
A.2.1 General background « Wikipedia
* LinkedIn

1. How long h b ing?
ow long have you been programming « StackOverflow

* Less than 1 year

e 1-2years

* 2 -5 years

* More than 5 years

. Are you currently a student?

* Yes

* No

. (If yes to above) Are you currently majoring in some-
thing that requires programming?

* Yes

* Maybe

* No
. (If yes or maybe to above) What is your major?

* Text box
. Are you currently employed in a role that requires pro-
gramming?

* Yes

* Maybe

* No
. (If yes or maybe to above) What is your occupation?

* Text box
. Please rate your proficiency with the following lan-
guages:

* Java (Extremely proficient, Moderately proficient,
Somewhat proficient, Not at all proficient, I am not
familiar with this programming language)

* C (Extremely proficient, Moderately proficient,
Somewhat proficient, Not at all proficient, I am
not familiar with this programming language)

* C++ (Extremely proficient, Moderately proficient,
Somewhat proficient, Not at all proficient, I am not
familiar with this programming language)

* Python (Extremely proficient, Moderately profi-
cient, Somewhat proficient, Not at all proficient, I
am not familiar with this programming language)

* Rust (Extremely proficient, Moderately proficient,
Somewhat proficient, Not at all proficient, I am not
familiar with this programming language)

* Ruby (Extremely proficient, Moderately proficient,
Somewhat proficient, Not at all proficient, I am not
familiar with this programming language)
Javascript (Extremely proficient, Moderately profi-
cient, Somewhat proficient, Not at all proficient, I
am not familiar with this programming language)

* Memory Alpha

* T have not used any of the websites above for pro-
gramming.

e I don’t program

. Choose the answer that best fits the description of a

compiler’s function.
» Refactoring code
» Connecting to the network
* Aggregating user data
* Translating code into executable instructions
* Collecting user data
e I don’t know

. Choose the answer that best fits the definition of a recur-

sive function.
¢ A function that runs for infinite time
¢ A function that does not have a return value
¢ A function that can be called from other functions
¢ A function that calls itself
* A function that does not require an input
¢ A function that interprets cursive handwriting
¢ I don’t know

. Which of these values could be assigned to a variable

with the type Boolean?
e Small
¢ Solid
¢ Quadratic
* Red
e True
e [don’t know

. Answer the next two questions using the following snip-

pet:
def func (example):
x = len(example)
out = "
for i in range (x):
out = out + examplel[x - 1 - 1]

return out

print (func("hello_world"))

. Referring to the above code snippet, what is the parame-

ter of the function?
e out
* example
e for iin range(x)

dlrow olleh
world hello

* Outputting a string
* x =len(example)

* I don’t know « HELLO WORLD
7. Please select the returned value of the pseudocode above: * hello world hello world hello world hello world
* hello world e I don’t know

* hello world 10

	Introduction
	Related work
	Method
	Study design
	Data analysis
	Recruitment
	Ethics and consent
	Limitations

	Results
	Participants
	Replicating results from Acar et al.
	Comparing functionality among conditions
	Comparing security among conditions
	Effects on participants

	Discussion and recommendations
	When to use Write, Read, or Fix
	How to design Write, Read, Fix studies

	Acknowledgments
	Survey instruments
	Final survey
	Encrypt/decrypt task specific questions
	Keygen task specific questions
	Study specific questions
	System Usability Scale
	Acar Usability Scale
	SSD-SES
	General technical background
	Demographics

	Screening survey
	General background
	Screener from Danilova et al. danilova2021you

