Write, Read, or Fix? Exploring
Alternative Methods for Secure
Development Studies

Kelsey R. Fulton* (Colorado School of Mines), Joseph Lewis
(University of Maryland), Nathan Malkin* (New Jersey Institute of
Technology), and Michelle L. Mazurek (University of Maryland)

* - Work performed while at University of Maryland

BSPA

\
S

Developers struggle with security

* NVD reported 28,831 vulnerabilities in 2023 [1]
» 25,081 in 2022

» Often caused by developers:
* Making mistakes
* Misunderstanding security

» Addressing this requires understanding it

» Studying developers as they build code

[1] - https://nvd.nist.gov

How do we study developers?

* |nterview studies

* Surveys

» Code writing studies

Challenges with code writing tasks

Code writing is time consuming T 5 ,
ropouts

Tasks are difficult to scope

l Samples
It Is hard to effectively design studies

Developers are hard to recruit and retain: BRI R U 1 VR o) o o I gl

- Hard to find that will yield §|mllar results while
reducing stress?

» Participate outside of work hours

» Participate for less money than they are paid at work

Using code review

* |n 2021, Danilova et al. explored the use of code review [1]
» Participants wrote code reviews about snippets from a prior study
» Code review is potentially useful in place of long programming tasks

* Able to identify issue developers faced

Expand on this by directly

comparing a Read and Fix
condition

[1] - Danilova et al. Code Reviewing as Methodology for Online Security Studies with Developers —
A Case Study with Freelancers on Password Storage. In SOUPS 2021

Write, Read, and Fix

- Write code to * Read * Read
complete spec completed code completed code
. Provided tests » |dentify any » |dentify any
bugs/vulns bugs/vulns
* Describe fixes » Fix bugs/vulns
* Do not actually - Provided tests
alter code

 Cannot run
code

Research questions

* Do the Read and Fix conditions provide the same results as Write"?
* Functionality and security

* Do participants in Read and Fix experience fewer negative effects?
» Drop-out rate

* Frustration

* Time spent

Study design

- Partially replicated prior study [1]
» Participants completed self-contained, short Write tasks
» Utilized 1 of 5 Python libraries
» Tasks were focused on (a)symmetric encryption
* Allowed us to compare our Write results

* While allowing us to compare Write, Read, Fix

[1] - Acar et al. Comparing the Usability of Cryptographic APlIs. In S&P 2017.

2017 [EEE Symposium on Security and Privacy

Comparing the Usability of Cryptographic APIs

Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel®,
Doowon Kim!, Michelle L. Mazurek’, and Christian Stransky
CISPA, Saarland University; “National Institute of Standards and Technology; "University of Maryland, College Park

Abstract P PIRTIEY

y dang cryptography errors are well-
d in many applicati Ci jonal wisdom suggests
that many of these errors are caused by cryptographic Appli-
cation Programming Interfaces (APIs) that are too complicated,
have insecure defaults, or are poorly documented. To address this
problem, researchers have created several cryptographic libraries
that they claim are more usable; however. none of these libraries
have been empirically evaluated for their ability to promote
more secure development. This paper is the first to examine
both how and why the design and resulting usability of different
cryptographic Ebraries affects the security of code written with
them, with the goal of understanding bow to build effective
future libraries. We conducted a controlled experiment in which
256 Python developers recruited from GitHub

Many researchers have used statsc andd dynamic analysis
techniques to :dentify and investigate cryptographic errors in
source code or binaries [2]-{6). This approach is extremely
valusble for illustrating the pervasiveness of cryptographic
errors, and for identifying the kinds of errors seen most
frequently in practice, but it cannot reveal root causes. Conven-
tonal wisdom in the security community suggests these errors
proliferate i large part because cryptography is so dafficult for
non-experts to get nght. In particular, Librarses and Application
Programming Interfaces (APIs) are widely seen as being
complex, with many confusing options and poorly chosen

tasks invelving symmetric and asymmetric cryptography using
one of five different APIs. We examine their resulting code for
functional correctness and security, and compare their results
to their self-reported sentiment about their assigned library.
Our results suggest that while APIs designed for simplicity

can p y ing the decision space, as
expected, prevents choice of insecure parameters—simplicity is
not enough. Poor d i issing code les, and a

lack of auxilinry features such as secure key dnrl;e. caused
even participants assigned to simplified libraries to struggle
ith bo! jonal cor and

th basic fi ity. Surprisingly,
the availability of comprebensive d ion and easy-to-
use code les seems to for more licated

APIs in tmtol functionally a;tnd results and pll’tﬂtblll
reactions; however, this did not extend to security results. We

Jefaults (e.g. [7)). R ly, cryptograp have created new
libraries with the goal of addressing developer usability by
stmplifying the APl and blishing secure defaults [B), [9).
To our knowledge, however, none of these libraries have been
empirically evaluated for usability. To this end, we conduct
a controlled experiment with real developers to nvestigate
rool causes and p diff cryptographic APls. While
it may seem obvious that simpler is better, a more in-depth
evaluation can be used to reveal where these hbraries succeed
at their objectives and where they fall short. Further, by
understanding root causes of success and failure, we can
develop a blueprint for future libraries.

Thas paper presents the first empincal comparison of several

find it particularly concerning that for about 20% of functionally
correct tasks, across libraries, participants belicved their code
was secure when it was not.

Our results suggest that while new cryptographic libraries
that want to promote effective security should offer a simple,

this is not h: they should also, and
perhaps more importantly, ensure support for a broad range of
tasks and provid ible d ion with secure,

easy-to-use code examples.

I. INTRODUCTION

Today's connected digital economy and culture run on &
of cryptography, which both suthenticates remote
parties 10 each other and secures private i

1.

cryptographic libraries. Using Python as common implemen-
tation language, we conducted a 256-person, between-subjects
online study comparing five Python cryptographic libranes
chosen 1o represent a range of popularity and usability:
cryptography.io, Keyczar, PyNaCl, M2Crypto and PyCrypto.
Open-source Python developers completed a short set of
cryptographic programming tasks, using either symmetric or
asymmetric pramitives, and using one of the five libraries.
We evaluate particspants’ code for functional correctness and
secunty, and also collect their self-reported sentiment toward
the usability of the library. Taken together, the resulting
data allows us to compare the librartes for usability, broadly
lefined 1o include ability to create working code, effective

Cryptographsc errors can jeopardize people’s finances, publi-
cize their private information, and even put political activists at

secunty n practice (when used by primanly non-security-
expert developers), and participant satisfaction. By using a

ed

risk [1). Despite this critical importance, ceyptographic errors

have been well documented for decades, in both production
applications and widely used developer libearies [2)-[5).

The sdentification of a commercial product or trade name does not imply
endosement of recommendation by the Natoasd Institute of Standasds and
Technology. mor is it intended %o imply that the materials or equipment
ideatsied are necessanily the best available foe @ purpose.

© 2017, Yasemin Acar. Under license so [EEE.
DOIL 10.110%/5P 2017 .52

154

¢ sSig experiment, we can compare
the libraries directly and identify root causes of errors, without
confounds related to the many reasons particular developers
may choose particular librasies for thear real projects.

We find that simplicity of indivsdual mechanisms in an APl
does not assure that the APl is, i fact, usable. Instead, the
stronger predsctors of participants producing working code

e
i comput
e sol("my

Authorized lcersed use imiad 1o; IEEE Xplore, Downicaded on May 12,2023 &1 17:27:57 UTC from IEEE Xplore, Restricions apply

Study flow

—» Condition assignment | Tasks —»
PyCrypto Performance on
e

tasks
Read Crypto.io

Encrypt/
decrypt data

Frustration and fun
Generate and

store a key

Background

Data analysis

» Manually reviewed code for bugs/vulnerabilities
» Leveraging the vulns/bugs from [1] and our known list

* o compare results among conditions:

» Ran various regressions for impact of library and condition

Recruitment and participants

» Recruited 112 valid participants from Upwork and CS student mailing lists
* Write: 35 participants
* Read: 37 participants
* Fix: 40 participants
» QOur participants were fairly experienced, but not in security:
* Avg 6.8 years programming experience

* Avg 4 years Python experience

* Avg 1.2 years security experience

Research questions

* Do the Read and Fix conditions provide the same results as Write"?
* Functionality and security

* Do participants in Read and Fix experience fewer negative effects?
» Drop-out rate

* Frustration

* Time spent

Takeaway #1: Use Write to measure the efficacy of code writing tools

» Write was able to reveal important differences between crypto APls

» Specifically, in the security of solutions participants produced

* Also revealed documentation issues
* These differences were substantially less visible in Read and Fix

» Security APls are designed to prevent developers from making security
mistakes

» Rather than identifying or fixing them

Takeaway #2: Use Read to measure developers’ knowledge

* Read participants pay close attention to the code
* |dentified fewer, but more diverse bugs than Fix participants

* |dentified more vulns than Fix, even identifying 8 out-of-scope vulns

» Making Read useful for identifying overall security awareness and knowledge

Takeaway #3: Use Fix to measure quick fixes

* Fix participants heavily focused on passing provided tests
» All of our Fix participants started by running the code
» Causing them to miss bugs and vulnerabilities

* Fix may be useful for identifying vulns and bugs developers can quickly find

« Offer lower bound on their abilities

Takeaway #4: Use Read and Fix to minimize time, frustration

* Read and Fix participants spent less time than Write participants
* And had fewer dropouts

* Read and Fix participants actually enjoyed their tasks

* Read and Fix may offer an appropriate option when recruitment is a concern

* We explored two alternatives (Read and Fix) to code writing studies (Write)

» Write more clearly identifies security differences between security APIs

* Read participants paid close attention to the code

* Fix participants focused on passing tests, missing key vulns

» Participants felt fewer negative effects (frustration, time spent) in Read and Fix

» Possibly helping in retention and recruitment

Questions?
kelsey.fulton@mines.edu

Securit & People At '/ines

