
AQualitative Analysis of Fuzzer Usability and Challenges
Yunze Zhao

University of Maryland
College Park, USA
yunze@umd.edu

Wentao Guo
University of Maryland

College Park, USA
wguo5@umd.edu

Harrison Goldstein
University of Maryland

College Park, USA
harrygol@umd.edu

Daniel Votipka
Tufts University
Medford, USA

dvotipka@cs.tufts.edu

Kelsey Fulton
Colorado School of Mines

Golden, USA
kelsey.fulton@mines.edu

Michelle Mazurek
University of Maryland

College Park, USA
mmazurek@umd.edu

Abstract
Fuzzing is a widely adopted technique for uncovering software vul-
nerabilities by generating random or mutated test inputs to trigger
unexpected behavior. However, little is known about how devel-
opers actually use fuzzing tools in practice, the challenges they
face, and where current tools fall short. This study investigates
the human side of fuzzing via 18 semi-structured interviews with
fuzzing users across diverse domains. These interviews explore par-
ticipants’ workflows, frustrations, and expectations around fuzzing,
revealing critical usability gaps and design opportunities. The re-
sults can inform the next generation of fuzzing tools to improve
user experience, reduce manual effort, and enable more effective
integration of fuzzing into real-world workflows.
ACM Reference Format:
Yunze Zhao,Wentao Guo, Harrison Goldstein, Daniel Votipka, Kelsey Fulton,
and Michelle Mazurek. 2018. A Qualitative Analysis of Fuzzer Usability and
Challenges. In Proceedings of Make sure to enter the correct conference title
from your rights confirmation email (Submitted to CCS). ACM, New York,
NY, USA, 16 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Automated techniques for identifying security vulnerabilities have
become essential tools for developers and security professionals.
Among these techniques, fuzzing has emerged as a widely adopted
automated testing method, crucial for discovering software vulnera-
bilities by generating random inputs and evaluating how programs
handle them. Its ability to uncover unexpected behaviors and crit-
ical security flaws has made it indispensable in open-source and
commercial software development projects [15, 42, 51, 65, 78].

Fuzzing’s efficacy for vulnerability discovery is well-documented,
with tools such as AFL/AFL++, FuzzTest, and OSS-Fuzz, leading
the way in identifying thousands of vulnerabilities across widely
used software, including complex systems such as browsers and
kernels [1, 2, 8, 14, 16]. Consequently, fuzzing is increasingly recog-
nized as a critical and powerful concept in modern software testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Submitted to CCS, Taipei, Taiwan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

pipelines and is recommended in various industry standards and se-
curity guidelines, underscoring its growing role in secure software
development [7, 26, 58].

The majority of fuzzing research has, unsurprisingly, prioritized
technical advancements, such as input generation [34, 66], seeds
scheduling [54, 77], mutation [10, 29], and harness generation [5,
21, 55], with relatively little attention to how users interact with
and adapt these tools in practice.

Initial usability research—primarily observational or experimen-
tal studies with students and/or in lab settings—has begun to iden-
tify some potentially important challenges. For example, fuzzers
tend to exhibit a steep learning curve, reducing their accessiblity to
non-expert developers [6, 45, 48]. Grey-box fuzzers like AFL and lib-
Fuzzer rely on code coverage feedback to guide testing and discover
bugs, but the configuration and tuning of these tools for optimal
performance demand a deep understanding of the underlying mech-
anisms [8, 16, 78]. Challenges with configuration and associated
workflows can lead to frustration and misconfiguration, reducing
the potential impact of fuzzing in everyday software development
practices [32, 78]. Further, a lack of standardized evaluation prac-
tices makes it difficult for adopters of fuzzers to compare options
based on performance [19, 28]

These prior studies have made an important start toward un-
derstanding fuzzing usability, but have limited visibility into how
experienced practitioners fit fuzzers into their real-world develop-
ment and vulnerability analysis workflows more broadly.

This paper attempts to address this gap through 18 semi-structured
interviews with experienced users of fuzzers from both academia
and industry. Semi-structured interviews provide the flexibility to
qualitatively explore the specific struggles and obstacles faced by
practitioners, while also capturing a broad range of insights into
their workflows, challenges, and suggestions for improvement.

Specifically, we consider the following key research questions:

RQ1 What specific challenges do users face across the lifecycle of
a fuzzing campaign in real-world deployments?

RQ2 What strategies do practitioners use to address or work
around these challenges?

RQ3 What improvements to fuzzing tools would better support
practical adoption and real-world workflows?

Our findings reveal that while participants viewed fuzzing as
powerful and indispensable, they frequently encountered steep
learning curves, unintuitive interfaces, and limited feedback dur-
ing both setup and analysis. Participants often relied on informal

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Submitted to CCS, October 13-17, 2025, Taipei, Taiwan Zhao et al.

heuristics and self-directed learning, leading to inconsistent men-
tal models of how fuzzers operate and creating confusion. Many
reported that fuzzers are difficult to configure and rarely integrate
well with modern development workflows. Despite these barriers,
participants demonstrated creative adaptations to make fuzzers
useful, and expressed a strong desire for tools that offer more ac-
tionable guidance, better integration with existing workflows, and
smarter, more transparent interfaces.

2 Background and Related Work
In this section, we provide a brief introduction to fuzzing, including
its fundamental concepts, popular techniques, and widely used
tools. Then we discuss studies of fuzzers’ usability and the usability
of security tools more broadly.

2.1 Fundamental Concepts of Fuzzing
Fuzzing is a form of dynamic software testing that evaluates pro-
gram behavior by executing the target with a wide range of inputs,
then observing runtime outcomes. A fundamental assumption in
fuzzing is that reliability or security flawswill manifest as detectable
failures when exposed to sufficiently diverse inputs. At its core, a
fuzzing campaign operates by generating inputs to the fuzzing
target (the application, library, or system under test), executing
it, and monitoring for failures such as crashes, hangs, or error sig-
nals [42]. Fuzzers sometimes begin with a set of user-provided
inputs (seeds) and progressively mutate them through a mutator
component to create new test cases. Inputs that explore new paths
or trigger interesting behavior are used to guide further fuzzing
target exploration. To connect the fuzzer to the program logic, users
typically write a harness: a wrapper function that accepts fuzzer
inputs and passes them to fuzzing target.

Fuzzers are often classified by howmuch visibility they have into
the target’s internals. Black-box fuzzers treat the program as opaque,
relying solely on observable outputs like crashes. Conversely, white-
box fuzzers leverage program structure through techniques like
symbolic execution. In between, grey-box fuzzers combine light-
weight instrumentation with runtime feedback to guide input gen-
eration. The most common form of runtime feedback is coverage: a
measure of how much of the program (e.g., branches, paths, or func-
tions) has been exercised [17, 31, 42, 70, 71, 78]. Coverage-guided
grey-box fuzzing tools (e.g., AFL, AFL++, libFuzzer, and Honggfuzz)
dominate both research and practice due to their balance between
effectiveness and scalability [16, 78]. We primarily recruited par-
ticipants with experience with these widely used tools; as such,
coverage-guided grey-box fuzzing is the main focus of our study.

2.2 Workflow of coverage-guided fuzzing
While the specifics of fuzzing vary depending on the use case [31,
42, 70, 71, 78], the typical workflow of coverage-guided fuzzers
requires users to actively prepare the target, integrate the fuzzer,
and interpret dynamic behavior and results.

Building the target with fuzzing instrumentation. First, the tar-
get application must instrumented to enable runtime feedback [68].
This typically requires using custom compilers or compiler flags.

This step may also require linking against specific runtime libraries
or enabling sanitizers for memory error detection [33].

Input delivery: Connecting fuzzing inputs to the target. Users
must next ensure that generated fuzzing inputs are routed into
the program logic they want to test. This can take different forms
depending on the fuzzer and the target application’s structure.

Some fuzzers, such as libFuzzer [4], expect users to supply a test
harness, as described above. The harness must be written in the
fuzz target’s source code and compiled together with the fuzzer.
Creating a harness requires understanding both the application’s
API and how the fuzzer invokes the harness.

In contrast, tools like AFL and AFL++ typically fuzz full programs
through the command-line interface [16]. These tools inject inputs
via stdin or temporary files and monitor for crashes or unusual
behavior. This approach is simpler because it does not require
modifying source code, but it offers less control over targeting
specific code paths or functions.

Most fuzzers generate unstructured, byte-level inputs, which can
be useful for raw parsing logic but require further configuration
by users for complex, structured input formats. Recent research
has explored automating input delivery, usually through harness
generation systems [5, 22, 74, 76], sometimes involving large lan-
guage models [37, 73, 75]. These approaches, while promising, still
require manual refinement for complex APIs or targets.

Configuring input strategy and seeds. Once input delivery is
established, users sometimes need to configure how fuzzer gener-
ates inputs to explore different execution paths [31]. Most modern
fuzzers come with optimized, built-in mutation strategies that can
be effective out of the box [20, 29, 35, 36, 52]. Instead of adjusting
the mutation strategy, users typically provide example seed inputs,
enable grammar support [67], or select from advanced options. In
particular, selecting high-quality initial seeds can accelerate path
exploration, improve code coverage, and reduce the number of
iterations needed to discover bugs [20, 52].

Monitoring and interpreting program behavior. In coverage-
guided fuzzing, users track dynamic feedback such as code coverage,
execution counts, or branch exploration to assess if the fuzzer is
exercising new paths, and adjust the configuration accordingly.

While running, fuzzers monitor for anomalous behavior such as
crashes, memory violations, assertion failures, or timeouts by using
lightweight instrumentation or integrations with external sanitizers.
The fuzzer reports on these anomalies, providing output such as
crash logs and stack or execution traces. Users must interpret this
output to understand the (possible) bugs the fuzzer has identified.

2.3 Fuzzer Usability
Next, we turn to existing research examining fuzzer usability, which
can be divided into two categories. First, there has been some work
comparing various tools and contexts of use in controlled experi-
ments [44, 48, 49]. For example, Nosco et al. conducted an experi-
ment with 12 security professionals aimed at comparing the efficacy
of breath- vs. depth-first review [44]. In the process, they identi-
fied challenges faced when participants attempted to set up the



AQualitative Analysis of Fuzzer Usability and Challenges Submitted to CCS, October 13-17, 2025, Taipei, Taiwan

fuzzers. Plöger et al. investigated usability more directly, examining
how CTF participants and computer-science students engage with
common fuzzers. In a first study comparing libfuzzer to the Clang
static analyzer, most participants struggled to set up the fuzzing
target [48]. In a follow-up comparing libfuzzer to AFL, the authors
found that even with clear goals and scaffolding to assist with setup,
student participants still struggled with both tools during tool in-
strumentation, results interpretation, and writing harnesses [49].
While these studies provide valuable guidance toward improving
fuzzer usability, the restricted setting and generally limited fuzzing
experience of participants limits the scope of possible findings. For
example, in many cases participants’ lack of experience prevented
them from reaching later stages of the fuzzing process, limiting
the challenges identified to fuzzer setup. By interviewing experts
with years of fuzzing experience testing multiple programs, we are
able to identify a broader range of challenges, as well as strategies
employed by our participants to overcome these barriers

The second category of work identifies fuzzing challenges writ
broadly through surveys, expert discussion, and artifact analy-
sis [9, 45]. Böhme et al. synthesized discussions from a working
group of 31 fuzzing practitioners and researchers, identifying multi-
ple fuzzing challenges [9]. They then surveyed 21 leaders in industry
and academia outside the working group to confirm this challenge
list. They identify usability as one concern, emphasizing that while
fuzzing simplifies bug discovery, it still requires significant exper-
tise; however, they do not explore concrete usability challenges and
their mitigations in depth.

Similarly, Nourry et al. reviewed GitHub issues associated with
OSS-Fuzz to produce a taxonomy of reported fuzzing challenges,
then validated it with a survey of 103 developers who indicated
how often they experienced each [45]. Their taxonomy identifies
usability challenges, such as selecting appropriate fuzzers and con-
figuring targets; however, it is limited to challenges that appear in
GitHub issues, and it does not detail how these challenges manifest
in practice or how fuzzing users overcome them. Both studies take
valuable steps in identifying the importance of usability to fuzzing
in practice. Our study expands on this work by capturing a broader
range of perspectives, using semi-structured interviews to explore
usability challenges (and their potential solutions) in detail.

2.4 Usability Beyond Fuzzing
Next, we briefly survey the growing body of research investigating
and attempting to improve the usability of other (non-fuzzing) se-
curity tools. Static application security testing (SAST) tools, which
analyze source code, bytecode, or binaries without executing the
program, are particularly well studied. Prior work has shown these
tools may produce false positives that can overwhelm users [13, 18,
30, 56, 60, 61, 63], lack clear outputs [13, 38, 43, 56, 57, 59], or be
hard to configure [43, 56, 59, 62] and integrate into existing work-
flows [11, 24, 50]. Rangnau et al. studied dynamic testing beyond
fuzzing, focusing on its integration into developers’ workflows [51].
Mattei et al. performed a heuristic evaluation of 288 security tools
(including static and dynamic analysis tools, including fuzzers),
assessing their expected usability [40]. This review, which drew on
prior interviews with security profesionals [64], found that most

security tools provide limited interaction and usability support,
with dynamic tools in particular exhibiting readability challenges.

Some researchers have worked to develop more human-centric
interfaces for security tools. Katcher et al. used paper prototypes
to identify user needs and provide design recommendations for
protocol reverse engineering human-automation interfaces [25].
Yakdan et al. developed a decompiler designed for code readability
and showed that it improved program understanding [69]. These
successes motivate our effort to characterize usability challenges
throughout the lifecycle of real-world fuzzing campaigns and iden-
tify potential human-centric design improvements.

3 Method
To explore our research questions, we conducted semi-structured
interviews with security professionals, software developers, and
security researchers who have experience using fuzzers in academic
or industry settings. Our goal was to understand how these pro-
fessionals interact with fuzzers, challenges they encounter, and
strategies they employ to improve their workflows.

3.1 Recruitment
We recruited 18 participants based on their experience with fuzzers.
To screen for relevant experience, potential participants completed
an initial survey that collected demographic and contextual infor-
mation, including participants’ professional background, years of
fuzzing experience, and the specific tools they used. The survey
responses helped to identify participants with substantial fuzzing
experience and provided context for interpreting their interviews.

As prior work has shown a learning curve for fuzzing, we in-
cluded participants with diverse experience levels to capture dif-
ferent perspectives along this spectrum. To focus on fuzzer usage,
we excluded potential participants whose primary expertise was
in fuzzer development. Instead, we selected for experience in ar-
eas such as automated harness generation, fuzzer benchmarking,
and general software security, all of which involve practical tool
usage. While many fuzzers exist, we primarily focused on users of
mainstream industry tools (AFL, libFuzzer, and LibAFL), including
potential participants who built custom wrappers around these
tools [39]. This approach helped us capture a more comprehensive
picture of the challenges and strengths of commonly used fuzzers.
As recruitment proceeded, we employed purposive sampling, i.e.,
selecting new participants to increase the diversity of fuzzing goals
and experiences within our sample.

We recruited academic and industry participants,1 using the fol-
lowing multiple strategies to ensure a diverse and qualified sample:
• Security Professionals: We identified GitHub users who had
submitted fuzzing-generated test cases for vulnerabilities in C,
C++, or Rust programs. These submissions demonstrated prac-
tical expertise and real-world fuzzing success. When GitHub
profiles included a personal website with contact information,
we reached out directly to invite participation.

• Academic Researchers: We contacted authors of recent re-
search papers that involved applying fuzzers. Our goal was to
recruit researchers with hands-on experience using fuzzing in

1Some participants based in academia shared insights drawn from previous or ongoing
industry collaborations, and vice versa.



Submitted to CCS, October 13-17, 2025, Taipei, Taiwan Zhao et al.

varied contexts, while excluding those whose primary experience
was limited to developing a fuzzer.

• Community Announcements: We posted recruitment mes-
sages in multiple fuzzing-related Discord servers. These commu-
nities included practitioners, researchers, and hobbyists, helping
us reach a broader pool of participants.

• Snowball Sampling and Professional Connections: We re-
cruited additional participants through personal networks and
referrals, including asking initial participants to recommend col-
leagues or peers with relevant experience.

3.2 Interview Protocol
We conducted 18 semi-structured interviews between October 2024
and April 2025, each lasting approximately one hour. Each inter-
view followed a semi-structured format, allowing us to cover key
topics while also adapting to participants’ unique experiences. All
interviews were conducted over Zoom, except for one which was
conducted via Discord due to the participant’s preference.

This study was approved by Anonymous Institution’s Institu-
tional Review Board (IRB), all participants were informed about the
purpose and scope of the study prior to participation. Participants
were shown a consent form at the beginning of the prescreen-
ing survey, where they confirmed their agreement to proceed. We
verbally confirmed consent again at the beginning of each inter-
view. Participants were compensated 75 USD for their time. Only
audio from the interviews was recorded under participants’ permis-
sions. Recordings were stored locally on secure, access-controlled
machines. Identifiable information was removed or anonymized
during transcriptions and analysis. Although some participants dis-
cussed professional or project-related tooling, we did not include
proprietary or sensitive technical details in our findings.

The interviews were structured around three key themes, reflect-
ing major stages of the fuzzing workflow discussed in Section 2.2:
• Fuzzer Setup and Usage: Participants described how they se-
lected and prepared fuzzing targets, including instrumentation,
harness creation, seed selection, and configuration.

• Monitoring, Interpreting, and Managing Output: How par-
ticipants analyze and act on fuzzer findings, addressing chal-
lenges such as redundant reports, prioritization strategies, and
extracting actionable insights.

• Opportunities for Improvement: Participants reflected on
potential enhancements to fuzzing tools, including desired fea-
tures, usability improvements, and the integration of fuzzing
with other security testing methods.
While the interview script provided structure, we adopted an

iterative approach. As themes emerged, we refined or changed our
follow-up questions to probe relevant challenges in more depth.
We also updated our prescreening criteria, for example, once we
reached saturation with participants who primarily conducted
fuzzer evaluations, we began filtering out individuals with sim-
ilar backgrounds. We continued conducting interviews until we
reached thematic saturation.

3.3 Data Analysis
All interviews were transcribed using OpenAI Whisper [47], an
automated transcription service. The model was run entirely on

local machines. To ensure data security and participant privacy, all
audio recordings and transcripts were stored locally on secure sys-
tems and were not shared with third-party services. The transcripts
were analyzed using a collaborative thematic analysis to identify
recurring themes and insights [12], through the following stages:
(1) Initial Open Coding: Two researchers independently reviewed

the transcripts and assigned preliminary codes based on recur-
ring themes observed in the data. This step ensured a broad and
unbiased capture of potential insights.

(2) Collaborative Code Refinement: The two researchers com-
pared and discussed their initial codes, collaboratively resolving
any discrepancies and agreeing on a unified set of codes. This
process ensured consistency and rigor in the coding framework.

(3) Final Codebook Development: The agreed-upon codes were
refined into a final codebook, with categories structured to align
with the study’s research questions. This included themes for
workflows, usability challenges, and improvement opportunities.
This collaborative coding process ensured the analysis was re-

liable and comprehensive, combining multiple perspectives to en-
hance the depth of the findings. We did not calculate inter-rater
reliability (IRR), consistent with interpretivist approaches to qual-
itative research that emphasize collaborative sensemaking over
statistical agreement [41]. The final codes informed the analysis of
key themes, which are presented in the Section 4.

3.4 Threats to validity
While our study included participants with a range of fuzzing ex-
perience, we focused on widely used tools such as AFL/AFL++,
libFuzzer, and their variants. These tools are the most common en-
try points into fuzzing workflows and are frequently cited in both
academic research and practical security engineering. As such, we
aimed to capture usability patterns and challenges most represen-
tative of current practice, at the potential cost of underrepresent-
ing experiences with niche fuzzers or highly specialized domains.
Accordingly, our interview protocol emphasized conceptual and
methodological themes that transcend specific tooling.

Another limitation is the potential self-selection bias. Partici-
pants who responded to our outreach likely have stronger interest
in fuzzing and improving fuzzing workflows, and may therefore
have more interest or experience in overcoming tooling challenges.
We may therefore miss some challenges experienced by those who
tried but quickly abandoned fuzzing due to poor initial experiences.
To partially account for this, we included questions focused on
learning barriers, early-stage struggles, and moments of confusion.

Interview-based studies can introduce biases: participants may
misremember past experiences, and interviewer perspectives may
shape interpretations. To mitigate this, we asked for concrete exam-
ples, used a semi-structured protocol, and relied on collaborative
coding and iterative analysis [53].

We did not explicitly measure saturation during the interview
process. However, as the study progressed, we observed conver-
gence in participants’ responses, suggesting that our results capture
core usability challenges and opportunities for improvement.

Despite these limitations, our study offers practical insights into
the challenges and opportunities of using fuzzers, grounded in
diverse real-world experiences.



AQualitative Analysis of Fuzzer Usability and Challenges Submitted to CCS, October 13-17, 2025, Taipei, Taiwan

4 Results
In this section, we present our findings, organized into 6 categories.
We begin with participant demographics to contextualize their ex-
periences. Next, we describe participants’ mental models of fuzzers.
We then present findings (challenges, practices, and suggestions
for improvement) across three stages of the fuzzing workflow: (1)
preparing fuzzing targets and configuring fuzzers, (2) running and
monitoring fuzzing campaigns, and (3) integrating and extending
fuzzing within broader development and testing workflows.

4.1 Demographics
We categorized participants’ use cases for fuzzers based on their
roles and goals. Participants often engaged in multiple use cases,
which we captured across the following major categories:
• Software development: Using fuzzers as part of regular develop-
ment workflows to catch "low hanging fruits" bug early

• Cybersecurity: Applying fuzzing to discover vulnerabilities or
assess the security posture of software systems.

• DevOps: using fuzzers as part of CI/CD pipelines to ensure sta-
bility issues are caught continuously.

• QA/Testing: Using fuzzers within broader software testing strate-
gies, focusing on software from third parties.

• Research: Employing fuzzing as part of academic or industrial
research projects, such as tool evaluation, network protocol, or
auto harness generation.
Geographically, 12 of the 18 participants were based in the United

States, while the remaining six were located in other countries
across Europe and Asia. The distribution of participant experience,
tool usage, and organizational context is summarized in Table 1.

4.2 Participants’ understanding of fuzzers
While all our study participants were experienced fuzzer users,
and many had deep technical knowledge, including research back-
grounds, their understanding of how fuzzers work varied widely.
Some participants had highly developed understandings of fuzzing
internals, while others expressed uncertainty about how fuzzers
work “under the hood.” This variation often reflected the informal,
self-directed nature of how they learned to use fuzzers.

Fuzzing is uniquely valuable. Participants consistently expressed
strong enthusiasm for fuzzing—not just as a practical testing tech-
nique, but as a foundational concept in their approach to under-
standing software behavior. Even when fuzzers did not fully align
with their workflows or goals, participants saw fuzzing as indis-
pensable for surfacing bugs other methods might miss. Rather than
viewing it as just another automation tool, many regarded fuzzing
as a fundamentally different way of reasoning about software relia-
bility that emphasizes unpredictability, emergence, and exploration.

P3, for instance, described fuzzing as something developers “are
missing out on,” stressing that while unit tests cover expected cases,
“to find things that cannot be predicted, fuzzing is definitely the
de-facto thing to do.” P18 echoed this perspective, saying: “I realized
[fuzzing] is a really good testing technique. . . why are developers
not utilizing that enough? It is really powerful, extremely powerful.”
Participants who embraced fuzzing often reported a shift in their
testing mindset: “Once you get past the learning curve, you’re

entering a whole new realm of testing. You’d never fully trust test
cases anymore—you’d only trust whether something is bug-free
after running a fuzzer on it.” (P3)

In addition to applying fuzzing for bug detection, particiapants
adopted it as a core mental model for interrogating uncertainty in
complex software systems, cementing fuzzing as indispensable.

Fuzzers are worth adapting, even beyond their ideal scope.
While many considered fuzzing indispensable, participants recog-
nized fuzzing is not currently universally applicable, especially with
limited tool-sets. As P12 put it, “currently, fuzzing is only a great
fit for a few problem domains. . . typically, file formats, network-
based formats, parsing, decoding, deserializing.” These input-driven,
structurally predictable systems were widely seen as well suited to
fuzzing compared to software with complex state or semantic logic.

Rather than abandoning the technique when it didn’t apply di-
rectly, participants frequently found ways to adapt fuzzing to new
contexts by applying it as a general-purpose probe for problems
such as understanding how a legacy system behaved, testing se-
mantic consistency between components, and monitoring coverage
in machine learning frameworks. More broadly, participants ap-
plied fuzzing to surface edge cases, reveal implicit assumptions, or
provide behavioral baselines that informed further manual testing.

Despite the fact that adapting fuzzing to these contexts often
required additional effort (setup, scripting, or output reinterpreta-
tion), participants saw fuzzers as uniquely capable and worth the
effort, even when imperfectly aligned with their immediate goals.

Fuzzers are black boxes causing limited trust and interpretabil-
ity. While participants acknowledged the strong capabilities of
fuzzing, they also often described fuzzers’ internal behavior as
difficult to reason about. While all participants understood how
fuzzers should work they found that real-world use often offered
little feedback about what was happening internally, resulting in
unpredictability and opacity. As P3 put it, “Even if you do a deep
dive into the fuzzer, it’s always going to feel like a black box.”

Participants often relied on surface-level metrics such as line or
path coverage, crash counts, or timeouts to gauge progress. While
they recognized these metrics were imperfect, they were often the
only feedback available. As P4 explained, “We don’t really have
a clear way to determine, for example, what the absolute perfor-
mance of a fuzzer is or how to fully evaluate it. That lack of a ground
truth makes it challenging to assess fuzzers.” Others, like P12, de-
scribed relying on intuition or anecdotal experience rather than
measurable signals: “Just my own personal experience, AFL has
been better at finding bugs than LibFuzzer. . .. I don’t have data to
back that up. . . just my own personal experience.” This uncertainty
further contributed to the perception of fuzzers as black boxes, even
among users with deep technical experience. We discuss partici-
pants’ strategies for dealing with this challenge in Section 4.4.

4.3 Configuring Fuzzers and Preparing Targets
Before fuzzing can begin, users must prepare both the fuzzing
target and the fuzzer. Here, we describe the challenges participants
faced preparing fuzzing targets and configuring fuzzers, and how
these challenges impacted their ability to apply fuzzing effectively.



Submitted to CCS, October 13-17, 2025, Taipei, Taiwan Zhao et al.

ID Role Exp. Tools Org. Type Fuzzing Tool Use Cases
Software Dev Cybersecurity DevOps QA /Testing Research

P1 Software Engineer 1-2 yrs •, △, ★ Large ✓ ✓ ✓

P2 Research Assistant 1-2 yrs •, △ Academia ✓ ✓

P3 Research Assistant 1-2 yrs • Academia ✓

P4 Software Engineer >5 yrs •, △, ★, ♦ Large ✓ ✓ ✓

P5 Research Assistant 3-5 yrs •, △ Academia ✓ ✓

P6 Research Assistant 1-2 yrs •, △, ∇, ♦,★ Academia ✓ ✓ ✓ ✓

P7 Security Engineer >5 yrs •, △, ★ Large ✓ ✓

P8 Security Researcher <1 yr •, ∇ Academia ✓ ✓ ✓

P9 Research Assistant 1-2 yrs •, △, ∇ Academia ✓ ✓ ✓

P10 Research Assistant 3-5 yrs •, ★ Academia ✓ ✓

P11 Software Engineer >5 yrs •, △, ∇ Large ✓ ✓

P12 Security Engineer 3-5 yrs •, △, ★ Small/Med ✓ ✓ ✓

P13 Research Assistant 3-5 yrs •, ♦ Academia ✓ ✓

P14 Security Researcher >5 yrs •, △, ★ Large ✓ ✓

P15 Security Engineer >5 yrs •, △ Small/Med ✓ ✓

P16 Security Engineer 3-5 yrs △ Small/Med ✓

P17 Research Assistant 3-5 yrs •, △, ★ Academia ✓ ✓

P18 Security Engineer 3-5 yrs •, △ Large ✓ ✓ ✓

Table 1: Demographic details of interview participants. Tools: • AFL, △ LibFuzzer, ∇ Honggfuzz, ♦ PeachFuzzer, ★OSSFuzz.
Org. type: Large = 500+ employees; Small/Med = <500; Academia = university/industrial research.

We then highlight participants’ current strategies for choosing
appropriate tools and iterating toward workable setups. Finally,
we present participants’ ideas for improving this workflow stage,
including more automation, modularity, and support for broader
problem domains. We note that not all participant suggestions (in
this section and later) are necessarily realistic given the fundamental
nature of fuzzing, but they do highlight desired user experiences.
Going forward, we use labelsChallenge,Practice, and Suggestion
to clearly signal the focus of each finding.

Challenge: Self-directed learning leads to inconsistent un-
derstanding and conceptual ambiguity. A root cause of many
challenges is how participants learned to use fuzzers. Most partici-
pants described learning fuzzing through hands-on practice (11/18)
and/or written resources, e.g., blogs, academic papers, and docu-
mentation (13/18). While this approach often worked for quickly
setting up fuzzers or understanding fuzzing at a high level, it lead
to gaps or inconsistencies in conceptual understanding, especially
when reasoning about tool behavior, effectiveness, or advanced
feature configuration. As P5 put it, learning by “reading blog posts
and experimenting [made it] hard to tell if I’m doing it right.”

When documentation or tutorials did not provide sufficient guid-
ance, some participants (6/18) reported turning to fuzzers’ source
codeto understand how specific components worked or how to
extend the tool. For example, P3 said, “If my initial searches aren’t
helpful, I would jump into the code of the fuzzer itself.”

Participants noted that the absence of centralized, structured,
or pedagogically designed learning resources—on top of fuzzing’s
already steep learning curve—made it difficult to develop a deep, co-
herent understanding of core concepts. Even technically advanced
participants relied on ad-hoc sources and personal heuristics, con-
tributing to inconsistent mental models between participants. This

complicated on-boarding for new users and also introduced fric-
tion when sharing workflows, debugging issues collaboratively, or
evaluating fuzzing effectiveness in a reproducible way.

P14 illustrated this challenge by reflecting on inconsistent prac-
tices even among experienced practitioners: “They often ask how to
instrument a program properly because a lot of techniques require
modifying the compiler. . . Each fuzzer has its own instrumentation
approach.” These tool-specific assumptions, left unexplained in doc-
umentation or on-boarding, often required participants to reverse
engineer best practices on their own.

Because participants primarily learned by doing, their underly-
ing understanding of fuzzing concepts was influenced strongly by
the fuzzing contexts they had experienced, leading to divergent be-
liefs and assumptions. For example, participants exhibited varying
interpretations of terms like “false positive,” reflecting differences
in fuzzing goals and contexts rather than simple confusion. P1 de-
scribed false positives as duplicate crashes, putting focus on output
triage and tooling efficiency. In contrast, P13 defined them as inputs
that trigger unexpected behavior but do not correspond to actual
vulnerabilities, suggesting a goal of surfacing security-critical flaws.
Meanwhile, P17 considered false positives to be crashes caused
by issues in the harness itself, reflecting a focus on validating the
correctness of the fuzzing setup.

These differing perspectives highlights users learn fuzzing through
the lens of their specific testing objectives. Without shared con-
ceptual scaffolding, even experienced users may form divergent
assumptions about tool behavior and goals, fragmenting commu-
nity understanding.

Challenge: Setup is confusing and poorly aligned with par-
ticipant needs. To help with setup, most fuzzers come with docu-
mentation, Docker containers, or tutorials. However, participants
said these were often not detailed enough leading to struggles and



AQualitative Analysis of Fuzzer Usability and Challenges Submitted to CCS, October 13-17, 2025, Taipei, Taiwan

a cycle of trial and error with configuration flags, instrumentation
steps, and tool-specific adjustments. As P3 explained, “There’s a lot
I wasn’t familiar with. . . especially the flags. There are so many, and
I wasn’t always sure whether they were doing what I wanted them
to do.” What’s more, as P17 reflected, “A lot of the documentation. . .
requires a ton of prior knowledge that a lot of people don’t have,”
creating a significant barrier to entry.

Participants also pointed out that fuzzers are often only available
or optimized for certain use cases (e.g., small C/C++ command-
line utilities) that do not reflect modern software’s structure and
interfaces. P18 explained: “Fuzzing needs to be applied to more
different platforms, we don’t deal with x86 only. We have different
platforms and IoT devices that you need to write software for.”

Participants noted that adjusting flags or compiler options to
improve fuzzer performance must be done carefully to avoid un-
intended consequences. As P4 warned, “Setting up the fuzzer and
configuring it appropriately is something we need to be very careful
with. . . certain [compiler] optimizers might reduce the sensitivity
of the fuzzer.” As a result, some participants deployed fuzzers using
default settings, even though this did not align with their needs.

Challenge: Complex fuzzing targets impact the ability to ap-
ply fuzzing effectively. Beyond the setup challenges, participants
frequently encountered challenges preparing real-world programs
for fuzzing, especially for large, layered, or legacy codebases. Many
of these systemswere poorly documented, difficult to build, or relied
on outdated dependencies. As P14 put it, “Some of these projects
were written 30 years ago—you never know what to expect.”

These problems were magnified by the technical requirements of
coverage-guided fuzzers. Many require recompiling the fuzzing tar-
get with custom instrumentation compilers (e.g., AFL++’s modified
Clang or LLVM pass) to provide metrics and guide input genera-
tion. But as P14 noted, these extra steps “may fail if you enabled
certain optimization flags, or even fail by itself” since “open-source
and legacy programs can be surprisingly fragile.” Further, as P9
mentioned, “Different programs are built differently,” and “under-
standing where to introduce the AFL++ compiler in that build
process is the tricky part.”

Challenge: Identifying targets in unfamiliar codebases. Even
after a successful build, participants lacked principled strategies for
selecting where to fuzz, especially when they were fuzzing unfamil-
iar code. Instead, they relied on intuition, heuristics like choosing
functions that “looked interesting (P16),” or using commercial tool-
ing to surface likely targets but then applying personal judgment
to finalize the decision. P15 said they “just identify functions that
look like they could be good targets.”

These uncertainties surrounding the program under test often
compounded participants’ existing uncertainty about the fuzzer.
Participants were unsure how to apply their high-level fuzzing
knowledge to large, poorly understood, or legacy systems. This
mismatch between theoretical knowledge and practice introduced
hesitation and limited participants’ confidence in their strategies.

Practice: An iterative approach toward a working setup. To
cope with these setup frustrations, participants prioritized getting
their chosen fuzzer up and running with minimal friction. Rather

than aiming for a perfect setup from the start, they treated configu-
ration as an iterative, trial-and-error process: run the tool, observe
what breaks, adjust the harness or flags, and try again. During this
process, participants valued speed and feedback over precision: they
expected early runs to be shallow or error-prone, but saw value in
getting something running quickly so they could iterate and learn
from results. As P16 explained: “For a first pass, my priorities are
to get something running as fast as possible.”

To reduce complexity and improve reliability during early stages
of fuzzing, participants often sought to simplify their environment.
Some participants (4/18) emphasized the value of isolating the fuzzer
to prevent interference from the host system or conflicting software.
As P10 explained: “I usually run fuzzing campaigns in a Docker
container. . . so it has its own space, its own memory, and so on.” In
this vein, participants also often started with minimal harnesses,
often “feed[ing] the fuzzer input to whatever function in the API
looks most top-level.” (P16). These lightweight setups allowed them
to validate that the tool was functioning before adding complexity.

Practice: Selecting fuzzing targets based on experience, in-
tuition, and documentation. A critical part of setup involves
identifying where to fuzz within a fuzzing target. As noted earlier,
participants lacked principled strategies for target selection and
often defaulted to intuition. Even when external tools were avail-
able to suggest candidate entry points, participants still shouldered
much of the cognitive load when determining which to fuzz, usu-
ally relying on their understanding and intuition. As P15 reflected,
“Even with help. . . the way we select functions is not scientific. It’s
intuition-based.”

To gain deeper understanding of an unfamiliar fuzzing target,
participants used documentation and example code to help identify
stable or representative entry points, as P17 expressed: “If I’m trying
to harness a function that’s in the example documentationI can
look at that.”

When fuzzing workflows required or would benefit from initial
seeds, most participants extracted them directly from the fuzzing
target. A common strategy was to re-purpose unit test inputs or
files from the project’s test suite.P18 considered this the “best way"
to obtain seeds since developers “know their code the best."

Suggestion: Fuzzing setup should be automated and guided.
As a result of the setup challenges described above, participants
expressed a strong desire for tooling to guide or automate the setup
process, including help to identify viable targets, generate harness
scaffolds, and configure initial parameters efficiently.

The most frequently requested feature was automatic harness
generation. As described earlier, writing a harness requires un-
derstanding the fuzzing target—often involving time-consuming,
manual inspection of unfamiliar code. To reduce this burden, par-
ticipants wanted tools that could automatically generate runnable
harnesses based on program structure or existing usage patterns.
As P2 noted, automated harness generation would mean that “I
don’t need to write my own harness or specify the command line
manually. It could generate something the fuzzer can run.”

Others emphasized the potential of integrating fuzzing directly
into development environments. For example, both P15 and P12
envisioned a possible VS Code plugin that could automate common



Submitted to CCS, October 13-17, 2025, Taipei, Taiwan Zhao et al.

setup steps: “a plugin that looks for targets, suggests a harness with
an LLM, writes a test file, and then you just click go—you’re fuzzing.”
For participants like P12 and P15, seamless IDE integration could
significantly reduce the barrier to starting and iterating on fuzzing
tasks.

To further streamline setup, participants wanted assistance with
identifying good entry points and configuring fuzzer parameters.
These tasks often relied on intuition or partial static analysis, but
participants believed they could—and should—be supported more
directly by tooling. P9 described their ideal feature set as “automatic
harness generation, automatic instrumentation, and automatically
figuring out which configuration flags are best.” Similarly, P15 sug-
gested static analysis could be used to generate, filter, and rank a list
of fuzzable functions, reducing the need to “manually go through
every function.”

Even after setup, participants found it difficult to assess whether
their configuration choices, such as seed selection or entry point
targeting, were likely to yield useful results. Several expressed
interest in tools that provide early indicators of setup quality before
a campaign begins, As P10 proposed, “something like a metric from
previous fuzzing campaigns. . . that measures the quality of the
initial seed” would help users iterate more strategically.

Participants independently suggested AI as one possibility to
simplify or guide the setup process. While few had used large lan-
guage models directly for fuzzing configuration, several suggested
it might be useful. P14 imagined a future where GPT-like tools
could “read the files, handle errors, fix the command iteratively. . .
that would make life much easier.”

Together, these suggestions reflect a desire to move beyond low-
level configuration and towardmore intelligent, goal-driven fuzzing
setup, with tools that can reason about context and recommend
strategies, helping users get started with less trial and error.

4.4 Monitoring Fuzzing Campaigns
Once a fuzzer is running, users make ongoing decisions about
how to monitor progress, interpret output, and decide how long to
continue. In this section, we describe the challenges participants
encountered during active fuzzing, including difficulties interpret-
ing fuzzer output and uncertainty about when to stop. We highlight
the practical strategies participants used to improve efficiency and
gain insight, such as active observation and manual output triage.
Finally, we present their suggestions for improving this stage of the
workflow, including calls for more actionable output, clearer signals
about progress, and better support for analyzing and reproducing
crash results.

Challenge: Crash output is redundant and unhelpful.While
they did not expect crash reports to serve as a complete diagnosis,
participants emphasized that outputs often lacked sufficient context
to understand the actual issue or severity. When asked whether
AFL’s output was helpful for pinpointing bugs, P9 described it as
“More of a starter. I take that input and use other tools to figure out
where the bug is. . . I would re-execute it to see if that problem per-
sists, then I inspect it with memory analysis tools.” This response,
echoed by others, highlights that fuzzing results required consider-
able post-processing and external analysis to become actionable.

Participants reported receiving large volumes of redundant crashes
that required manual inspection. P3, who tests complex libraries,
described the scale of this problem: “Out of those thousand crashes,
900 of them can be redundant—it becomes really hard to manually
go through each and every one of them. That’s fundamentally a
challenge.”

While some tools offer de-duplication or grouping to minimize
redundancy, participants lacked trust in these feature due to un-
reliability and a concern that unique bugs might be incorrectly
grouped or silently discarded P11 said that despite AFL’s built-in
de-duplication, “We still found cases where different crashes actu-
ally stemmed from the same bug but were recorded as distinct.” P7
noted the opposite problem: “It clusters one crash incorrectly into
a different group. We have to fine-tune it really carefully in terms
of which heuristics we’re going to apply.”

In addition to crash reports, fuzzers produce timeouts reports;
participants also found these difficult to interpret. While many
considered timeouts a potentially valuable signal—often indicating
hangs or performance bottlenecks—fuzzers rarely provided enough
context to evaluate their cause or severity. As P6 explained, “Does
a timeout mean there was a bug? Or could there be multiple bugs?
How do you interpret the timeout? It becomes very nuanced.” This
ambiguity left participants uncertain whether to treat timeouts as
bugs worth triaging or simply as noise.

Challenge: Runtime outputs lack key details and context.
Beyond crash output, participants also described frustration with
output produced while fuzzing is actively running. Many said it
was difficult to tell whether their campaign was making progress.
While some fuzzers exposed performance metrics like coverage
growth or seed queue size, these metrics were often cryptic, under-
documented, or omitted entirely. As P12 said, “Runtime outputs are
famously inscrutable. . . When you look at AFL’s output or libFuzzer,
it’s all just abbreviations of things. Nobody knows what the heck
they are until you read the source code.”

Participants who attempted to inspect logs during fuzzing found
that crucial contextual information was often missing. For example,
P11 noted that “it doesn’t always log the parent seed, which mu-
tation operand was used to generate it, or even the exact time of
discovery.” Without this information, participants found it difficult
to trace how a particular input was derived, assess why it triggered
a bug, or reproduce conditions under which a crash occurred.

This lack of transparency is exacerbated by the inherent random-
ness of fuzzing. As P14 explained, “fuzzing results are inherently
random. A fuzzer might find a bug in one run but miss it in another.
Even if a fuzzer discovers an issue once, it might fail to do so in the
next repetition.” Without detailed metadata about input provenance
and mutation history, participants struggled with performance gap
analysis and root cause identification, making it harder to diagnose
inconsistent behavior or optimize future runs.

Taken together, these issues point to a core usability gap: fuzzers
often generate a lot of output, but it is not informative. Participants
had to exert significant effort tomake sense of crashes, triage results,
and assess campaign effectiveness.

Challenge: Stopping criteria are not well-defined. Fuzzing is
inherently an open-ended process, and participants understood



AQualitative Analysis of Fuzzer Usability and Challenges Submitted to CCS, October 13-17, 2025, Taipei, Taiwan

that new bugs could always be found with more time or better
mutations. However, real-world constraints like compute budgets
or project deadlines meant they eventually had to decide when to
stop. Making that decision, however, was far from straightforward.

Some participants (5/18) explicitly mentioned that they relied
purely on intuition or informal heuristics. As P15 put it: “There’s
no rigorous ‘when fuzzing is done’ criteria. . . I’ll typically set up a
fuzzing harness, run it overnight, and if in the morning there are
no finds, I’ll say, ‘okay, there’s nothing here to be found’.”

Others tried to use metrics like branch or path coverage to guide
the decision. But even this approach was fraught with doubt, espe-
cially when participants were unsure whether stagnation reflected
a truly exhausted search space or a bug in their setup. As P18 de-
scribed: “If the coverage is not increasing anymore. . . maybe there’s
a bug in our harness.”

Ultimately, many participants defaulted to setting arbitrary time
windows—ranging from a few days to a few weeks—based on prac-
tical constraints (e.g. perceived progress or resources) rather than
technical indicators. P18 explained, “A couple of days at least. Maybe
like a couple of weeks even. We don’t have like a specific defined
time window, but we can decide to stop if this fuzzing process is
consuming a lot of resources.” Some participants (10/18),particu-
larly those in research contexts, adopted 24 hours as a standard
campaign length, not because it was ideal, but because it aligned
with common benchmarking practices.

While participants didn’t expect fuzzers to offer a definitive
“you’re done” signal, they consistently expressed a desire for more
meaningful feedback about progress. The broader challenge wasn’t
just about finding a stopping rule, but about dealing with the fun-
damental fuzzing uncertainty in more informed ways. As long as
fuzzers remain opaque about how much ground they’ve covered
users will continue to face ambiguity in balancing thoroughness
with resource constraints.

Practice: Monitor early signals and prioritize efficiency. To
compensate for limited runtime feedback and unclear stopping
criteria, participants adopted practical strategies to improve the
efficiency of their fuzzing campaigns. Rather than relying solely on
built-in metrics or default configurations, they emphasized active
monitoring and workflow-level optimizations to detect problems
early and maximize returns.

Several participants (5/18) highlighted the importance of directly
observing fuzzer behaviorduring the early stages of a campaign,
allowing them to catch setup problems early.As P1 put it, ”It’s im-
portant to observe the process in real time rather than just starting
the fuzzer and walking away.” Similarly, P9 described using early
coverage metrics as a sanity check: “What I’m usually looking for
is if there’s absolutely no new branches found in the first couple
of minutes.” Participants emphasized that direct monitoring was
especially important with limited tool support for runtime diag-
nostics and termination guidance. In practice, participants relied
on a small set of interpretable signals, such as coverage, execution
speed, to assess fuzzing progress.

Others turned to parallelism to maximize fuzzer efficiency and
returns. Some ran multiple fuzzers or instances of the same fuzzer
with synchronized corpora to increase path discovery. P14 com-
bined these approaches, explaining: “I would run three or four

instances of the same fuzzer that synchronize their corpora period-
ically. Additionally, I would parallelize different fuzzers.”

Practice: Start with de-duplication, thenmanual triage. Partic-
ipants followed a common pattern when analyzing fuzzing output:
first de-duplicate crashes, then manually investigate those that re-
main. Many relied on custom scripts that go beyond the provided
fuzzer functionality in order to cluster or filter crashes based on
stack traces, memory addresses, or observed behavior.This initial
pruning step was essential to reduce noise and focus attention on
distinct issues.

After de-duplication, participants shifted to more in-depth anal-
ysis, such as re-running crashing inputs, tracing execution in tools
like GDB or Valgrind, or inspecting code to identify root causes.
While time-consuming, this manual process was necessary to un-
derstand the significance of each crash and determine whether it
indicated a real vulnerability. As P17 explained, “In some cases, you
can look it up online and try to see if other people experienced a
similar crash.”

Participants also shared creative adaptations to streamline this
process. For example, P3 described an ad-hoc sampling strategy: “Re-
run [crash reports] . . . and randomly sample the outputs. Once I see
a pattern in the outputs, I create a script to prune out those specific
patterns.” This approach deviated from tool-provided heuristics,
reflecting the extent to which participants had to rely on personal
judgment and scripting to make the output manageable. While
these techniques made analysis more tractable, they were also labor
intensive and required judgment and scripting skills.

Suggestion: Provide detailed, actionable runtime output. As
noted above, participants consistently expressed frustration with
insufficiently detailed runtime output, which made it difficult to
debug fuzzer setup or adjust strategies during long-running cam-
paigns.

Several participants (6/18) emphasized the need for richer, real-
time feedback during fuzzing execution. Rather than waiting until
the end of a run, they wanted visibility into the internal behavior of
the fuzzer while it was running—such as which paths were being hit,
how frequently, and where progress was stalling. As P8 expressed:
“Wewant to get more insights into why a fuzzer is having difficulties
finding a particular bug. . . if we could know the frequency with
which the fuzzer hits each path, that would be helpful.”

Besides richer run-time feedback, some participants (6/18) en-
visioned visual interfaces that could make fuzzing dynamics more
interpretable, especially for understanding execution paths and
bottlenecks. P10 imagined a web-based dashboard that overlays
program structure with fuzzing behavior: “with the source code
on one side and a function-level view of how fuzzing is working,
. . . you could see what inputs passed through which functions and
visualize the execution tree.”

A few participants (4/18) discussed possible human-in-the-loop
features as a promising direction. Rather than treating fuzzers as
black boxes, participants wanted a tool that could “recommend
how I can fuzz better, like offering tips or strategies to improve the
fuzzing process.” (P3) This collaborative tool could “tell me when
it’s no longer being efficient” or ”maybe even recommend stopping
or fuzzing again later when the code has changed significantly.”



Submitted to CCS, October 13-17, 2025, Taipei, Taiwan Zhao et al.

(P11) These techniques would allow users to guide or interact with
the fuzzer mid-execution, by flagging bottlenecks or injecting hints,
instead of simply relying on automated exploration.

Suggestion: Make crash output easier to triage and repro-
duce. In addition to runtime feedback, participants agreed that
fuzzers need better support for crash triage and reproduction. As
described earlier, built-in de-deduplication approaches left room
for improvement, often requiring participants to develop custom
solutions.

Beyond de-duplication, participants wanted crash output to be
more actionable. Some participants (4/18) suggested smoother re-
production mechanisms, such as the ability to “inject crashing in-
puts directly into the target” (P1) or analysis hooks similar to those
tools like GDB provide, highlighting that this would help reduce
the overhead of re-executing crashes. Others (4/18) suggested that
fuzzers should provide flexible and informative categorization of
crash types. Specifically, they wanted tools to “automatically clas-
sify the different results . . . based on the kind of bugs detected” (P2)
to help users prioritize and understand outcomes more effectively.

These suggestions reflect a broader desire for fuzzers that find
failures and support users in diagnosing and addressing them with
less manual effort.

4.5 Integration of Fuzzing Workflows
Beyond setup and runtime, participants often needed to adapt
fuzzers to fit broader development workflows or support more
advanced testing goals. In this section, we describe the limitations
participants encountered when applying advanced features, cus-
tomizing tool behavior, or scaling fuzzing across large systems. We
outline the workarounds participants used to integrate fuzzers into
their pipelines—often writing scripts or wrappers to make tools fit
their specific context. Finally, we present suggestions for improving
this stage, including better user interfaces, more flexible architec-
tures, and features that help users coordinate fuzzing with other
development and testing activities.

Challenge: Fuzzers are overcomplicated and hard to adapt.
While modern fuzzers offer powerful capabilities, many partici-
pants found them over-engineered, difficult to configure, and poorly
aligned with practical workflows. P4 noted that “the community has
been merging a lot of tools and mods into single platforms,” which
adds complexity and makes tools harder to work with. Several par-
ticipants pointed out that setups intended to simplify fuzzing, such
as Docker-based workflows, sometimes introduced unnecessary
complexity. As P7 described, “They had one Docker image to build
the fuzzer, a second to compile the target, and a third to actually run
it.” What was meant to streamline experimentation instead created
a set of complicated pipelines that were difficult to modify.

Several participants noted that without usable, transparent inter-
faces, new fuzzing tools that are theoretically better for a given task
may not get adopted. They mentioned attempting and failing to
use a specialized tool that was designed for their intended use case,
as P3 explained “If I had a better interface to understand what’s
going on. . . I could have leveraged (the tool) better. But it was so
noisy, . . . I just fell back to AFL.”

Recent innovations like hybrid fuzzing, which combines fuzzing
with static or symbolic analysis, aim to promote usability by increas-
ing code coverage and automating deeper bug discovery. Ironically,
participants (6/18) described them as especially difficult to config-
ure and fit into their workflow. As P8 explained, “They normally
have a symbolic executor running in parallel, and I need to figure
out the steps to set up both parts.”Some tools ran multiple analysis
modes simultaneously, which made it difficult to manage or control
fuzzing sessions, in turn making it difficult to “figure out how to
stop them once they found the first crash” (P8).

Participants working in large-scale environments raised addi-
tional concerns about performance tuning. Despite having high
compute capacity, they found that tools didn’t scale well and re-
quired manual duplication of tasks to avoid performance degra-
dation. P11 explained, “On our system with 128 cores, running
64 threads often performs worse than 32. . . We introduce dupli-
cate fuzzing tasks to prevent degradation.” These workarounds
weren’t just technical annoyances; they introduced inefficiencies
that drained resources and limited the feasibility of deploying
fuzzers consistently at scale.

Together, these accounts reveal a growing disconnect between
the increasing complexity of modern fuzzers and the practical needs
of those who use them.

Challenge: Research prioritizes performance. Several partici-
pants (5/18), particularly from industry, expressed frustration with
the broader culture of fuzzing research, which they saw as overly fo-
cused on marginal gains in technical metrics rather than improving
usability or addressing practical barriers to adoption. Specifically,
participants contrasted research on advanced mutation strategies,
hybrid analysis, or deep state exploration with a lack of attention
to usability, such as clearer configuration interfaces, modularizing
components, or improved crash triage.

P12 observed, “A lot of research is about maximizing coverage
or depth, but I don’t see a lot of investigation into how to make
these fuzzers easier to use.” This view was echoed by P17, who
considered many advancements in fuzzer performance irrelevant to
their work:“There can always be changes made to the efficiency. . . ,
but those are things that I’m not particularly concerned [about].”

Across these ideas, the core message was consistent: “I think
fuzzer capability is good enough. . . but I don’t see a lot of investiga-
tion into how to make these fuzzers easier to use.” (P12) Participants
don’t just want better results or better performance, they want bet-
ter visibility, smarter feedback, and tighter integration with their
workflow.

Participants across both academia and industry emphasized that
real-world adoption depends on usability. P14, who works in indus-
try, contrasted the two: “Industry cares more about usability than
academia does. . . When we release a new fuzzer, we want people to
use it. In industry, if a tool isn’t easy to use, it won’t get adopted.”

Challenge: Lack of standardization and reproducibility. Partic-
ipants also criticized a perceived lack of standardization and rigor in
fuzzer evaluation.2 P14 noted that despite efforts like FuzzBench [3],
“there’s no standardized way to evaluate. . . In this environment, a

2Similar concerns are reported in [28].



AQualitative Analysis of Fuzzer Usability and Challenges Submitted to CCS, October 13-17, 2025, Taipei, Taiwan

bad baseline is a good baseline. That’s a major problem in fuzzing
research.” Without agreed-upon benchmarks and consistent setups,
participants from both academia and industry expressed skepticism
about how well academic fuzzing results translate into practical
value.

Beyond research settings, lack of standardization also made col-
laboration and reproducibility more difficult. Differences in archi-
tecture, environments, or dependency versions created headaches
when sharing setups or reproducing results. As P6 noted, “Certain
combinations just don’t work. . .On a different architecture, you
might need a different version of a library that wasn’t necessarily
packaged with the program you’re trying to use. You can do all your
due diligence. . . but as soon as a couple of things change. . . the next
person who tries to reproduce your work often has to invent a way
to make it work.” They estimated that the cumulative cost of this
brittleness—especially in complex, low-level systems code—likely
amounts to “millions of dollars” in wasted developer time.

These concerns are not limited to academia. Participants noted
that when state-of-the-art research lacks standardization and robust
evaluation practices, it becomes difficult for industry to benchmark
tools, assess tradeoffs, or justify adoption, limiting the deployment
of fuzzing at scale.

Practice: Selecting and adapting the right tool(s) for the task.
To better integrate fuzzing into their workflows, participants se-
lected and adapted tools based on their testing goals, software
constraints, and resource availability. While some fuzzers attempt
to offer general-purpose functionality across domains, participants
agreed that no single fuzzer is universally effective. Instead, they
made pragmatic choices, such as targeting compiled binaries, spe-
cific APIs, or protocol-level behavior, based on what the context
demanded. These decisions were also shaped by practical concerns
such as deadlines, familiarity with tooling, and the complexity of
the fuzzing target.

Many participants (8/18) paired fuzzing with other analysis tech-
niques to improve effectiveness. P12 described their team’s typical
workflow as a combination of static analysis and fuzzing, stating:
“Our bread and butter tends to be static analysis and fuzzing . . . us-
ing public rules and also writing our own internal rules. Often that
informs the fuzzer.” Likewise, P13 explained that “Only when we
combine [fuzzing and formal tools] do we find the bug,” illustrating
the need to augment fuzzing with complementary strategies to
reach deeper system states.

As described above, newer hybrid fuzzing approaches attempt
to integrate fuzzing with static analysis, but participants who had
tried them found them difficult to use. In some cases, participants
modified the fuzzer itself to accommodate their needs. P3, working
with stateful protocols, recalled: “I had to make some modifications
to [the fuzzer]. . . We used another state machine alongside [the
fuzzer] to ensure certain states were being invoked or not,” showing
that integration sometimes required invasive changes to the tool.

For some participants (4/18), integrating fuzzing into their work-
flows required adaptations beyond configuration tweaks, including
building their own wrappers, scripts, or orchestration layers. For
example, P12 and P16 used Cargo-Fuzz (a libFuzzer wrapper) to fuzz
Rust programs, while P15 mentioned using TestFuzz and CargoAFL
(an AFL wrapper) for Rust programs. P18 reported using GoFuzz

for Go projects and noted limited success integrating fuzzing into
a GitLab continuous integration (CI) pipeline. Others, like P6 and
P7, wrote custom scripts to manage parallel runs or automate tasks
like resetting parameters in order to scale fuzzing across multiple
targets or campaigns. While effective, these workarounds highlight
the absence of built-in support for usability and integration.

These adaptations highlight the diverse ways experienced users
shape fuzzing workflows to fit real-world testing challenges: often
blending fuzzing with other tools, tuning its behavior, or modifying
it directly to meet their needs.

Suggestion: Fuzzers should be flexible and modular. In re-
sponse to the growing complexity of fuzzers, participants advo-
cated for flexibility in how fuzzer structure and configuration.Some
(4/18) preferred a modular architecture rather than huge, mono-
lithic tools, where components (e.g. mutator, scheduler, and feed-
back mechanism) could be swapped or extended independently As
P7 explained: “The program being executed, the mutation module,
the scheduling module, they should all be replaceable, like plug-
and-play components. . . In [one tool]. . . if I want to change how
feedback or scheduling works, I have to go into the source code
and make changes directly. And that’s not pretty.”

Others (6/18) preferred standalone tools or custom integrations
over bundled toolchains. Rather than using pre-integrated modules
or instrumentation layers, they wanted to combine tools manually
to suit their specific goals. P4 said, “Some people might disagree
with me, but I prefer standalone tools with their own setups.”

Beyond architectural modularity, participants also emphasized
the need for greater configuration flexibility.While many tools offer
various flags and options, some participants felt that important
parameters were too deeply embedded or hard-coded, limiting the
ability to adapt the tool to different use cases. P9, for example,
expressed frustration with [one tool]: “There are a lot of flags, but I
wish there were more options to turn different things on and off. . .
a lot of things are baked in and hard-coded into the codebase, and
I wish I could modify them.” This lack of configurability made it
harder for participants to tailor fuzzers to fit specific performance,
instrumentation, or deployment needs.

These suggestions show a broader desire for fuzzers that not
only work out of the box, but also allow power users to adapt and
reconfigure them for advanced use cases without digging deeply
into the source code.

Suggestion: Increase applicability across problem domains..
Many participants (11/18) further expressed a desire for fuzzers
that could work across a wider range of domains in general. They
felt that current tools were limited to traditional bug classes and
struggled to scale to more complex or abstract targets, such as
business logic, system integration, or semantic validation.

Some participants (3/18) suggested fuzzers should operate at a
higher level of abstraction to better support application logic, such
as authentication, authorization, or backend workflows. They envi-
sioned tools that could combine internal application data (e.g., web
server logs or state transitions) with fuzzer feedback to enable this
shift. As P12 explained, “If you can reconcile what the web server
sees with what the fuzzer sees, then I think there is opportunity.”



Submitted to CCS, October 13-17, 2025, Taipei, Taiwan Zhao et al.

Others (5/18) emphasized that certain domains, such as kernel
fuzzing, emulator-based analysis, and distributed systems, remain
prohibitively slow or difficult to fuzz effectively. They called for
tools that could handle these environments more efficiently, es-
pecially when speed and depth must be balanced. As P14 noted,
“General-purpose fuzzing is already fast, but kernel fuzzing, network
fuzzing, and emulator-based fuzzing tend to be slow.”

Participants (10/18) also suggested combining fuzzing with for-
mal methods or symbolic techniques could improve its viability
in domains with large design spaces or complex constraints. P13
said, “Fuzzing is more efficient if I have to explore a large design
space, especially when combined with formal verifications.” Overall,
participants found much potential value in hybrid approaches, de-
spite the usability burdens they currently impose (discussed above)
further reinforcing the need for more usable tooling in this space.

5 Discussion
Our results suggest the usability of fuzzers in practice remains a
major barrier to wide adoption. Here, we discuss how insights from
our study can inform the design of more usable fuzzers and outline
opportunities for future work.

Some modern fuzzing frameworks (LibAFL’s modular architec-
ture, OSS-Fuzz’s CI integration) have begun addressing some issues
we highlight. However, our recommendations reflect broader us-
ability gaps across the fuzzing ecosystem, from the perspective of
users working in varied environments and domains.

Iterative setup with better defaults and automation. Our par-
ticipants commonly approached fuzzing setup as a trial-and-error
process: run the tool, observe failures, adjust the harness, and re-
peat. While this process can work, it tends to be time-consuming
and labor intensive, especially for users who are not familiar with
the fuzzing target. To better support getting started, fuzzers should
provide better defaults, guided setup, and lightweight automation
to help users get to a runnable state faster. For example, based on
the characteristics of the fuzzing target or specific function of entry,
tools could auto-generate basic harness scaffolding, recommend
commonly used flags, or detect problematic configurations before
launch. These improvements would lower the barrier to entry, re-
duce early-stage frustration, and allow users to focus their effort
on campaign tuning rather than setup debugging.

Modular, flexible architectures for advanced users. While
some participants preferred simple, ready-out-of-the-box setups,
others—particularly those with security or research experience—
sometimes preferred greater flexibility to tailor the fuzzer to their
specific needs. These users expressed frustration with tool designs
that made it difficult to replace or extend core components such
as mutators, feedback mechanisms, or scheduling strategies. A
modular architecture, where components can be swapped via well-
defined APIs, would allow users to customize and experiment with-
out modifying source code directly. For example, users should be
able to plug in a custom mutation strategy or modify feedback logic
without breaking tool stability. While frameworks like LibAFL have
started moving in this direction, participants noted that this level of
modularity is still uncommon across the broader fuzzing ecosystem.

Improved output triage and crash de-duplication. Output anal-
ysis currently requires manual inspection; however, participants
typically wrote custom scripts to identify crashes worth investigat-
ing, because built-in de-duplication features were often insufficient.
Tools should provide multiple crash de-duplication mechanisms
that are more robust, transparent, and flexible, as well as offering
summaries or filtering based on possible root cause. Participants
also expressed interest in customizable crash categorization: us-
ing user-defined grouping logic rather than static, preset labels, to
enable triage that matched their context and priorities.

Better workflow integration and interface improvements.
Participants described fuzzers as rigid and disconnected from their
broader workflows. They expressed a clear need for fuzzers to in-
tegrate more seamlessly into existing tooling (e.g., version control
systems, build pipelines, and IDEs) so they can be deployed incre-
mentally and monitored more naturally. In addition, participants
wanted better user interaction. While participants had mixed atti-
tudes toward graphical user interfaces overall, they all agreed that
dashboards, lightweight visualizations, or IDE plugins could greatly
improve visibility into what the fuzzer is doing, helping with cam-
paign setup and monitoring. Others proposed interactive interfaces
that could suggest possible harness improvements, forecast seed
quality, or notify users when fuzzing has likely stalled.

5.1 Future work
While our participants largely worked with traditional fuzzers, a
few had tried hybrid fuzzers. Despite their growing adoption in
research and practice [72], hybrid fuzzers remain unexplored from
a usability perspective, as existing studies tend to focus on technical
performance and coverage improvements [23, 27, 46]. As hybrid
fuzzing continues to evolve, understanding its usability implications
remains an important but underexplored area.

Another direction is the development of human-in-the-loop
fuzzing systems, where users can adjust input strategies, prior-
itize paths, or guide the fuzzer when progress stalls. Researchers
could investigate what human input is most useful, how to design
appropriate interfaces, and how to balance control with automation.

Future research should also explore how users make decisions
about when to stop fuzzing. We find that users lack clear stopping
criteria and often rely on intuition or heuristic time limits. While
fuzzing is a random process with no “correct” stopping point, build-
ing more trust in stopping decisions could help improve efficiency
and confidence, especially when users have limited resources.

Finally, as fuzzing expands beyond traditional security domains,
future work should investigate usability challenges in details re-
garding new contexts such as continuous integration, large-scale
system testing, or hardware fuzzing. Understanding how work-
flows, goals, and user expertise differ across domains will be critical
to supporting further adoption of fuzzers.

6 Conclusion
Fuzzing continues to evolve as a powerful testing techniques, but its
usability remains a critical barriers to broader adoption, Through
18 semi-strictured interviews with experienced users from both



AQualitative Analysis of Fuzzer Usability and Challenges Submitted to CCS, October 13-17, 2025, Taipei, Taiwan

academia and industry, we identify recurring challenges in the
usage of fuzzers in setup, feedback interpretation, output triage,
and workflow integrations. Our findings highlight a disconnect
between the growing technical capabilities of fuzzers and the prac-
tical needs of fuzzers users. By centering usability in future tool
development by employing better automation, flexibility, actionable
feedback, and integration, fuzzing as a testing techniques can be
more accessible and effective across a wider range of domains.

References
[1] [n. d.]. Fuzzing Introspection of OSS-Fuzz projects. https://introspector.oss-

fuzz.com/
[2] [n. d.]. Google FuzzTest. https://github.com/google/fuzztest
[3] Google 2025. Google/Fuzzbench. Google. https://github.com/google/fuzzbench
[4] [n. d.]. libFuzzer – a Library for Coverage-Guided Fuzz Testing. — LLVM 21.0.0git

Documentation. https://llvm.org/docs/LibFuzzer.html
[5] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo Ivančić, Tim King, Markus

Kusano, Caroline Lemieux, László Szekeres, and Wei Wang. 2019. Fudge: fuzz
driver generation at scale. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 975–985.

[6] Antonia Bertolino. 2007. Software Testing Research: Achievements, Challenges,
Dreams. In Future of Software Engineering (FOSE ’07). 85–103. doi:10.1109/FOSE.
2007.25

[7] Paul E Black, Barbara Guttman, and Vadim Okun. 2021. Guidelines on minimum
standards for developer verification of software. arXiv preprint arXiv:2107.12850
(2021).

[8] Marcel Boehme, Cristian Cadar, and Abhik ROYCHOUDHURY. 2021. Fuzzing:
Challenges and Reflections. 38, 3 (2021), 79–86. doi:10.1109/MS.2020.3016773

[9] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. 2020. Fuzzing: Chal-
lenges and reflections. IEEE Software 38, 3 (2020), 79–86.

[10] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-adaptive
mutational fuzzing. In 2015 IEEE Symposium on Security and Privacy. IEEE, 725–
741.

[11] Maria Christakis and Christian Bird. 2016. What developers want and need
from program analysis: an empirical study. In Proceedings of the 31st IEEE/ACM
international conference on automated software engineering. 332–343.

[12] Victoria Clarke and Virginia Braun. 2017. Thematic analysis. The journal of
positive psychology 12, 3 (2017), 297–298.

[13] Lisa Nguyen Quang Do, James R Wright, and Karim Ali. 2020. Why do software
developers use static analysis tools? a user-centered study of developer needs
and motivations. IEEE Transactions on Software Engineering 48, 3 (2020), 835–847.

[14] Max Eisele, MarcelloMaugeri, Rachna Shriwas, Christopher Huth, and Giampaolo
Bella. 2022. Embedded Fuzzing: A Review of Challenges, Tools, and Solutions. 5,
1 (2022), 18. doi:10.1186/s42400-022-00123-y

[15] Michael Felderer, Matthias Büchler, Martin Johns, Achim D Brucker, Ruth Breu,
and Alexander Pretschner. 2016. Security testing: A survey. In Advances in
Computers. Vol. 101. Elsevier, 1–51.

[16] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++ :
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association. https://www.usenix.
org/conference/woot20/presentation/fioraldi

[17] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. 2008. Grammar-based
whitebox fuzzing. In Proceedings of the 29th ACM SIGPLAN conference on pro-
gramming language design and implementation. 206–215.

[18] Zhaoqiang Guo, Tingting Tan, Shiran Liu, Xutong Liu, Wei Lai, Yibiao Yang,
Yanhui Li, Lin Chen, Wei Dong, and Yuming Zhou. 2023. Mitigating false pos-
itive static analysis warnings: Progress, challenges, and opportunities. IEEE
Transactions on Software Engineering 49, 12 (2023), 5154–5188.

[19] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A ground-
truth fuzzing benchmark. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 4, 3 (2020), 1–29.

[20] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,
and Antony L Hosking. 2021. Seed selection for successful fuzzing. In Proceedings
of the 30th ACM SIGSOFT international symposium on software testing and analysis.
230–243.

[21] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer. 2020.
{FuzzGen}: Automatic fuzzer generation. In 29th USENIX Security Symposium
(USENIX Security 20). 2271–2287.

[22] Bokdeuk Jeong, Joonun Jang, Hayoon Yi, Jiin Moon, Junsik Kim, Intae Jeon,
Taesoo Kim, WooChul Shim, and Yong Ho Hwang. 2023. Utopia: Automatic
generation of fuzz driver using unit tests. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE, 2676–2692.

[23] Ling Jiang, Hengchen Yuan, Mingyuan Wu, Lingming Zhang, and Yuqun Zhang.
2023. Evaluating and improving hybrid fuzzing. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 410–422.

[24] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
2013 35th International Conference on Software Engineering (ICSE). IEEE, 672–681.

[25] Samantha Katcher, James Mattei, Jared Chandler, and Daniel Votipka. 2025. An
Investigation of Interaction and Information Needs for Protocol Reverse Engi-
neering Automation. In Proceedings of the 2025 CHI Conference on Human Factors
in Computing Systems.

[26] Natalia Kazankova. 2024. From DAST to Dawn: Why Fuzzing is the Better Solu-
tion. https://www.code-intelligence.com/blog/from-dast-to-dawn-why-fuzzing-
is-the-better-solution Accessed: 2025-04-13.

[27] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and
Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel.. In NDSS.

[28] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2123–2138. doi:10.1145/3243734.
3243804

[29] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
international conference on automated software engineering. 475–485.

[30] Jinfeng Li. 2020. Vulnerabilities mapping based on OWASP-SANS: a survey for
static application security testing (SAST). arXiv preprint arXiv:2004.03216 (2020).

[31] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018.
Fuzzing: State of the art. IEEE Transactions on Reliability 67, 3 (2018), 1199–1218.

[32] Bingchang Liu, Liang Shi, Zhuhua Cai, and Min Li. 2012. Software Vulnerability
Discovery Techniques: A Survey. In 2012 Fourth International Conference on
Multimedia Information Networking and Security (2012-11). 152–156. doi:10.1109/
MINES.2012.202

[33] Yuwei Liu, Yanhao Wang, Purui Su, Yuanping Yu, and Xiangkun Jia. 2021. Instru-
guard: find and fix instrumentation errors for coverage-based greybox fuzzing. In
2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 568–580.

[34] Chenyang Lyu, Shouling Ji, Yuwei Li, Junfeng Zhou, Jianhai Chen, and Jing Chen.
2018. Smartseed: Smart seed generation for efficient fuzzing. arXiv preprint
arXiv:1807.02606 (2018).

[35] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. {MOPT}: Optimized mutation scheduling for fuzzers. In
28th USENIX security symposium (USENIX security 19). 1949–1966.

[36] Chenyang Lyu, Shouling Ji, Xuhong Zhang, Hong Liang, Binbin Zhao, Kangjie
Lu, and Raheem Beyah. 2022. EMS: History-Driven Mutation for Coverage-based
Fuzzing.. In NDSS.

[37] Yunlong Lyu, Yuxuan Xie, Peng Chen, and Hao Chen. 2024. Prompt Fuzzing for
Fuzz Driver Generation. In Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security. 3793–3807.

[38] Reza M. Parizi, Kai Qian, Hossain Shahriar, Fan Wu, and Lixin Tao. 2018. Bench-
mark Requirements for Assessing Software Security Vulnerability Testing Tools.
In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMP-
SAC), Vol. 01. 825–826. doi:10.1109/COMPSAC.2018.00139

[39] Sanoop Mallissery and Yu-Sung Wu. 2023. Demystify the fuzzing methods: A
comprehensive survey. Comput. Surveys 56, 3 (2023), 1–38.

[40] James Mattei, Madeline McLaughlin, Samantha Katcher, and Daniel Votipka. 2022.
A Qualitative Evaluation of Reverse Engineering Tool Usability. In Proceedings
of the 38th Annual Computer Security Applications Conference (Austin, TX, USA)
(ACSAC ’22). Association for ComputingMachinery, New York, NY, USA, 619–631.
doi:10.1145/3564625.3567993

[41] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
inter-rater reliability in qualitative research: Norms and guidelines for CSCW and
HCI practice. Proceedings of the ACM on human-computer interaction 3, CSCW
(2019), 1–23.

[42] Richard McNally, Ken Yiu, Duncan Grove, and Damien Gerhardy. 2012. Fuzzing:
The State of the Art. Technical Report DSTO–TN–1043. Australian Government,
Department of Defence, Defence Science and Technology Organisation.

[43] Marcus Nachtigall, Michael Schlichtig, and Eric Bodden. 2022. A large-scale
study of usability criteria addressed by static analysis tools. In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
532–543.

[44] Timothy Nosco, Jared Ziegler, Zechariah Clark, Davy Marrero, Todd Finkler,
Andrew Barbarello, and W. Michael Petullo. 2020. The Industrial Age of Hacking.
In 29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
1129–1146. https://www.usenix.org/conference/usenixsecurity20/presentation/
nosco

[45] Olivier Nourry, Yutaro Kashiwa, Bin Lin, Gabriele Bavota, Michele Lanza, and
Yasutaka Kamei. 2023. The Human Side of Fuzzing: Challenges Faced by Devel-
opers during Fuzzing Activities. ACM Trans. Softw. Eng. Methodol. 33, 1, Article
14 (Nov. 2023), 26 pages. doi:10.1145/3611668

https://introspector.oss-fuzz.com/
https://introspector.oss-fuzz.com/
https://github.com/google/fuzztest
https://github.com/google/fuzzbench
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1186/s42400-022-00123-y
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.code-intelligence.com/blog/from-dast-to-dawn-why-fuzzing-is-the-better-solution
https://www.code-intelligence.com/blog/from-dast-to-dawn-why-fuzzing-is-the-better-solution
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/MINES.2012.202
https://doi.org/10.1109/MINES.2012.202
https://doi.org/10.1109/COMPSAC.2018.00139
https://doi.org/10.1145/3564625.3567993
https://www.usenix.org/conference/usenixsecurity20/presentation/nosco
https://www.usenix.org/conference/usenixsecurity20/presentation/nosco
https://doi.org/10.1145/3611668


Submitted to CCS, October 13-17, 2025, Taipei, Taiwan Zhao et al.

[46] Saahil Ognawala, Thomas Hutzelmann, Eirini Psallida, and Alexander Pretschner.
2018. Improving function coverage with munch: a hybrid fuzzing and directed
symbolic execution approach. In Proceedings of the 33rd Annual ACM Symposium
on Applied Computing. 1475–1482.

[47] OpenAI. 2025. Openai/Whisper. https://github.com/openai/whisper. https:
//github.com/openai/whisper

[48] Stephan Plöger, Mischa Meier, and Matthew Smith. 2021. A Qualitative Usability
Evaluation of the Clang Static Analyzer and libFuzzer with CS Students and CTF
Players. In Seventeenth Symposium on Usable Privacy and Security (SOUPS 2021).
USENIX Association, 553–572. https://www.usenix.org/conference/soups2021/
presentation/ploger

[49] Stephan Plöger,MischaMeier, andMatthew Smith. 2023. AUsability Evaluation of
AFL and libFuzzer with CS Students. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems (Hamburg, Germany) (CHI ’23). Association
for Computing Machinery, New York, NY, USA, Article 186, 18 pages. doi:10.
1145/3544548.3581178

[50] Roshan Namal Rajapakse, Mansooreh Zahedi, and Muhammad Ali Babar. 2021.
An empirical analysis of practitioners’ perspectives on security tool integration
into devops. In Proceedings of the 15th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). 1–12.

[51] Thorsten Rangnau, Remco v Buijtenen, Frank Fransen, and Fatih Turkmen. 2020.
Continuous security testing: A case study on integrating dynamic security testing
tools in ci/cd pipelines. In 2020 IEEE 24th International Enterprise Distributed Object
Computing Conference (EDOC). IEEE, 145–154.

[52] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing seed selection
for fuzzing. In 23rd USENIX Security Symposium (USENIX Security 14). 861–875.

[53] Irving Seidman. 2006. Interviewing as qualitative research: A guide for researchers
in education and the social sciences. Teachers college press.

[54] Dongdong She, Abhishek Shah, and Suman Jana. 2022. Effective seed scheduling
for fuzzing with graph centrality analysis. In 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 2194–2211.

[55] Gabriel Sherman and Stefan Nagy. 2025. No Harness, No Problem: Oracle-guided
Harnessing for Auto-generating C API Fuzzing Harnesses. In 2025 IEEE/ACM
47th International Conference on Software Engineering (ICSE). IEEE Computer
Society, 775–775.

[56] Justin Smith, Lisa Nguyen Quang Do, and Emerson Murphy-Hill. 2020. Why
can’t johnny fix vulnerabilities: A usability evaluation of static analysis tools for
security. In Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020).
221–238.

[57] Justin Smith, Brittany Johnson, Emerson Murphy-Hill, Bill Chu, and
Heather Richter Lipford. 2015. Questions developers ask while diagnosing po-
tential security vulnerabilities with static analysis. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. 248–259.

[58] Murugiah Souppaya, Karen Scarfone, and Donna Dodson. 2022. Secure software
development framework (ssdf) version 1.1. NIST Special Publication 800, 218
(2022), 800–218.

[59] Mohammad Tahaei, Kami Vaniea, Konstantin Beznosov, and Maria K Wolters.
2021. Security notifications in static analysis tools: Developers’ attitudes, com-
prehension, and ability to act on them. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. 1–17.

[60] Tyler W Thomas, Heather Lipford, Bill Chu, Justin Smith, and Emerson Murphy-
Hill. 2016. What questions remain? an examination of how developers understand
an interactive static analysis tool. In Twelfth Symposium on Usable Privacy and
Security (SOUPS 2016).

[61] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Aravkin. 2014.
Aletheia: Improving the usability of static security analysis. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.
762–774.

[62] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Har-
ald C Gall, and Andy Zaidman. 2020. How developers engage with static analysis
tools in different contexts. Empirical Software Engineering 25 (2020), 1419–1457.

[63] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy
Zaidman, and Harald C. Gall. 2018. Context is king: The developer perspective
on the usage of static analysis tools. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 38–49. doi:10.1109/
SANER.2018.8330195

[64] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S. Foster, and Michelle L.
Mazurek. 2020. An Observational Investigation of Reverse Engineers’ Processes.
In 29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
1875–1892. https://www.usenix.org/conference/usenixsecurity20/presentation/
votipka-observational

[65] Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy Hu, and Michelle Mazurek.
2018. Hackers vs. Testers: A Comparison of Software Vulnerability Discovery
Processes. In 2018 IEEE Symposium on Security and Privacy (SP). 374–391. doi:10.
1109/SP.2018.00003

[66] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-driven
seed generation for fuzzing. In 2017 IEEE Symposium on Security and Privacy (SP).

IEEE, 579–594.
[67] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-

aware greybox fuzzing. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE). IEEE, 724–735.

[68] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao Wu,
and Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by
Coverage Accounting for Input Prioritization.. In NDSS.

[69] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew Smith.
2016. Helping Johnny to Analyze Malware: A Usability-Optimized Decompiler
and Malware Analysis User Study. In 2016 IEEE Symposium on Security and
Privacy (SP). 158–177. doi:10.1109/SP.2016.18

[70] Qian Yan, Minhuan Huang, and Huayang Cao. 2022. A survey of human-machine
collaboration in fuzzing. In 2022 7th IEEE International Conference on Data Science
in Cyberspace (DSC). IEEE, 375–382.

[71] Zhenhua Yu, Zhengqi Liu, Xuya Cong, Xiaobo Li, and Li Yin. 2024. Fuzzing:
Progress, Challenges, and Perspectives. 78, 1 (2024), 1–29. doi:10.32604/cmc.2023.
042361

[72] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. {QSYM}:
A practical concolic execution engine tailored for hybrid fuzzing. In 27th USENIX
Security Symposium (USENIX Security 18). 745–761.

[73] Cen Zhang, Mingqiang Bai, Yaowen Zheng, Yeting Li, Wei Ma, Xiaofei Xie,
Yuekang Li, Limin Sun, and Yang Liu. 2023. Understanding large language model
based fuzz driver generation. arXiv e-prints (2023), arXiv–2307.

[74] Cen Zhang, Xingwei Lin, Yuekang Li, Yinxing Xue, Jundong Xie, Hongxu Chen,
Xinlei Ying, JiashuiWang, and Yang Liu. 2021. {APICraft}: Fuzz driver generation
for closed-source {SDK} libraries. In 30th USENIX Security Symposium (USENIX
Security 21). 2811–2828.

[75] Cen Zhang, Yaowen Zheng, Mingqiang Bai, Yeting Li, Wei Ma, Xiaofei Xie,
Yuekang Li, Limin Sun, and Yang Liu. 2024. How effective are they? Exploring
large language model based fuzz driver generation. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis. 1223–1235.

[76] Mingrui Zhang, Jianzhong Liu, Fuchen Ma, Huafeng Zhang, and Yu Jiang. 2021.
Intelligen: Automatic driver synthesis for fuzz testing. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 318–327.

[77] Xiaoqi Zhao, Haipeng Qu, Wenjie Lv, Shuo Li, and Jianliang Xu. 2021. Moofuzz:
Many-objective optimization seed schedule for fuzzer. Mathematics 9, 3 (2021),
205.

[78] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. 2022. Fuzzing: a
survey for roadmap. ACM Computing Surveys (CSUR) 54, 11s (2022), 1–36.

A Appendix: Interview Protocol
Note: The following questions and messages represent the general
structure and content of the interview, but may not be asked verba-
tim. The phrasing or order may be adjusted to fit the flow of the
conversation or specific context.

A.1 Introduction
Hi, my name is . Thank you for taking the time to participate
in our interview study. Our research focuses on understanding
how developers and computer security professionals like you use
fuzzing tools in your work. We aim to identify both the strengths
and challenges of these tools to help guide improvements and make
them more effective for the broader computer science community.

Your responses are valuable to us, and we want to assure you that
your data will be stored securely. We will not release any sensitive
information about you. Importantly, we do not expect you to share
any corporate secrets or proprietary information. If at any point
you’re concerned about disclosing such information, please feel
free to skip any questions.

This interview will be transcribed to support later analysis, and
all transcripts will be destroyed once the study is complete. We will
also share the results of our study with you.

Before we begin, do you have any questions about the
study or the consent form you filled out?

https://github.com/openai/whisper
https://github.com/openai/whisper
https://github.com/openai/whisper
https://www.usenix.org/conference/soups2021/presentation/ploger
https://www.usenix.org/conference/soups2021/presentation/ploger
https://doi.org/10.1145/3544548.3581178
https://doi.org/10.1145/3544548.3581178
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/SANER.2018.8330195
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-observational
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-observational
https://doi.org/10.1109/SP.2018.00003
https://doi.org/10.1109/SP.2018.00003
https://doi.org/10.1109/SP.2016.18
https://doi.org/10.32604/cmc.2023.042361
https://doi.org/10.32604/cmc.2023.042361


AQualitative Analysis of Fuzzer Usability and Challenges Submitted to CCS, October 13-17, 2025, Taipei, Taiwan

A.2 Broad Questions / Background
Before we dive into the main questions, I’ll start with a few general
questions about your experience using fuzzing tools. These initial
questions help us understand the context of your work.

• Can you describe a typical scenario where you’ve used a
fuzzing tool?
– What has your experience been like in those situations?
– How frequently do you use fuzzing tools, and in what
contexts?

• How did you learn to use fuzzing tools?
– Were there any resources or people that helped along the
way?

A.3 Specific Uses and Challenges
Now that we’ve covered some background, I’d like to focus on the
specific ways you use fuzzing tools and the challenges you may
have encountered. This will help us understand the practical aspects
of fuzz testing in your work.

• Can you walk me through the steps you follow when setting
up and using a fuzzing tool?
– what’s involved in setting up the driver, providing seeds,
and analyzing the outputs?

– Of these tasks, which ones are most time-consuming or
challenging, and why?

• What do you think are some good use cases for the fuzzer
you use?
– Have you had to modify or adapt a fuzzer? Can you give
an example?

– Can you share an example of a critical bug found using
fuzzing?

– If no example: What types of findings do you consider
most valuable?

• What expectations do you have when using a fuzzer? Has it
ever failed to meet them?
– Did you work around the limitation? Use other tools?

• Is there anything you changed about your fuzzing process
over time to make it more successful?

• Do you fuzz complex functions? If so, how do you choose
them? If not, why?

• What challenges have you experienced integrating fuzzing
into other testing processes?
– Are those challenges related to the tool, workflow, or some-
thing else?

– Do you foresee any learning curve or adoption challenges
in getting your team or teammate (intern) to use fuzzing
tools effectively?Howmight you address these challenges?

– If no integration: Do you think integrating fuzzing tools
with your existing testing processes (like unit testing,
static analysis, or CI/CD) would require significant ad-
justments? If so, what kind of adjustments would be nec-
essary? What are the challenges?

– Have these challenges impacted testing efficiency?
– What part of the tool presents challenges for integration?

A.4 Managing and Interpreting Fuzzer Output
Next, let’s talk about how you manage and interpret the results
from fuzzing tools. This section is about understanding how you
handle the data generated by fuzzers and how you make decisions
based on that information.

• At your work, how do you interpret and manage the results
generated by a fuzzer?
– What tools or methods do you use to organize and priori-
tize fuzzer findings?

– if they mention specific tools: How effective do you find
these tools in helping you manage large volumes of data?

• Do the fuzzing tool you use in your workflow produce a
large amount of output?
– if yes:

∗ What are some of the biggest challenges you’ve encoun-
tered when managing the large volume of findings gen-
erated by fuzzers? How do you usually handle those?

∗ Can you give us an example of the challenges you men-
tioned?

∗ Which issues do you address first?
∗ What factors influence your prioritization process?

– if no:
∗ Howdo you review the output generated by your fuzzing
tool? What are you looking for in these outputs?

∗ Do you feel the fuzzing tool provides enough actionable
insights even with a limited number of results?

• Have you ever encountered cases where a critical issue was
hidden in less important findings? How did you identify it?
– What strategies do you use to manage duplicate reports?
– if they struggle with duplication: Have you found any
tools or methods that help reduce the time spent on man-
aging duplicates?

• How do you decide if you’ve done enough fuzzing?
– Do you feel unsure about whether enough fuzz testing
has been done? What steps do you take when you’re un-
certain? Can you give me an example?

– What are some techniques you use to verify that you have
done enough testing

– if they mention uncertainty in completion: How do
you handle situations where you’re unsure if enough test-
ing has been done?

A.5 Opportunities for Improvement
Finally, I’d like to explore your thoughts on how fuzzing tools
could be improved. This section is focused on identifying potential
enhancements that could make fuzz testing more effective and
efficient in your work.

• In your experience, are there any recurring issues or frustra-
tions with fuzzing tools that you wish could be addressed?
What specific improvements would make the most difference
in your day-to-day work?
– Sometimes new features come with trade-offs. Do you
think adding these improvements might introduce new
challenges, such as increasing complexity or generating
too much data to process?



Submitted to CCS, October 13-17, 2025, Taipei, Taiwan Zhao et al.

– if they suggest a specific feature: Have you seen any
tools that already offer something similar, or would this
be a completely new capability?

• What feedback do you think fuzzer can provide to boost your
confidence that your program is thoroughly tested?

• How well do you think fuzzing fits with the other tools and
testing methods you currently use? Are there any testing
tools you’d like to see integrated with your fuzzer to the
testing process?
– What specific capabilities would you want from such an
integration?

– Do you think integrating fuzzers with tools like static
analysis or UI-based reverse engineering would make it
easier to find and fix issues? How would that look in your
workflow?

– Are there any concerns or challenges you think might
arise from integrating these tools?

• If you could create the ultimate fuzzing tool for your work,
what are the top three features it would need to have? How
would those features solve the biggest issues you face today?

– if they struggle to describe features: Is there a partic-
ular problem or inefficiency in your current process that
you would want this ideal tool to solve?

A.6 Wrapping Up
Thank you so much for your time and insights today. Your infor-
mation is incredibly valuable to our study, and we truly appreciate
your contribution. Before we wrap up,

• Is there anything else you’d like to share about your experi-
ence with fuzzing or anything we haven’t covered that you
think is important?

• Do you have any questions about this research or anything
we’ve discussed?

• Lastly, if you know anyone else who might be interested in
participating in this study, we’d greatly appreciate it if you
could refer them to us.

We’ll be sure to share the results with you once the study is
complete. Thanks again, and have a great day!


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Fundamental Concepts of Fuzzing
	2.2 Workflow of coverage-guided fuzzing
	2.3 Fuzzer Usability
	2.4 Usability Beyond Fuzzing

	3 Method
	3.1 Recruitment
	3.2 Interview Protocol
	3.3 Data Analysis
	3.4 Threats to validity

	4 Results
	4.1 Demographics
	4.2 Participants' understanding of fuzzers
	4.3 Configuring Fuzzers and Preparing Targets
	4.4 Monitoring Fuzzing Campaigns
	4.5 Integration of Fuzzing Workflows

	5 Discussion
	5.1 Future work

	6 Conclusion
	References
	A Appendix: Interview Protocol
	A.1 Introduction
	A.2 Broad Questions / Background
	A.3 Specific Uses and Challenges
	A.4 Managing and Interpreting Fuzzer Output
	A.5 Opportunities for Improvement
	A.6 Wrapping Up


